martes, 7 de agosto de 2012

 las plantas

Las plantas , como el resto de seres vivos, poseen un organismo vivo que puede ser dividido en tres partes principales: raíz, tallo y hojas.

¿ Qué son la raíces?

La raíz es el órgano que se encuentra debajo de la tierra. Su función es sujetar la planta y absorber las sales minerales y el agua del suelo.
Toda raíz consta de raíz principal que es la parte más gruesa. Las raíces secundarias salen de la raíz principal y no son tan gruesas como aquella. La caliptra o cofia es la protección con la que terminan las raíces. Sirve para que las raíces puedan perforar el suelo. Los pelos absorbentes son unos filamentos diminutos que recubren las raíces y tienen la función de absorber el agua y las sales minerales del suelo.
Existen diferentes formas de raíces según su forma, su función o el lugar en donde se desarrollen. Por ejemplo, las raíces napiformes, como la de la zanahoria, presentan una raíz principal muy engrosada por acumulación de substancias de reserva; las raíces acuáticas de las lentejas de agua absorben directamente las substancias del agua.
Algunas raíces son aprovechadas por el hombre como alimento, especialmente aquellas que acumulan reservas como las raíces de las zanahorias o los rábanos. Otras raíces se consumen por su sabor o por sus propiedades medicinales, como la raíz de la regaliz

Raíz 


Raíces de un árbol de mangle (Rhizophora), ParáBrasil.
En botánica, la raíz es un órgano generalmente subterráneo y carente de hojas que crece en dirección inversa al tallo y cuyas funciones principales son la fijación de la planta al suelo y la absorción de agua y sales minerales. La raíz está presente en todas las plantas vasculares exceptuando algunas pteridófitas que presentan rizoides y algunas plantas acuáticas.1 La raíz delembrión —llamada radícula— es la primera de las partes de la semilla que crece durante la germinación. La radícula, entonces, se desarrolla originando la raíz primaria con su tejido de protección en el ápice, denominada caliptra. La radícula crece y se fija al suelo desde los primeros estadios del crecimiento de la planta, con lo cual se garantiza el posterior desarrollo de la misma. En las plantas monocotiledóneas, la radícula aborta en los estados iniciales del desarrollo, por lo que el sistema radical está conformado por raíces que surgen de la base del tallo, las que —por ese motivo— se denominan raíces adventicias.2 En lasgimnospermas y dicotiledóneas la raíz primaria produce, por alargamiento y ramificación, el sistema radical alorrizo, caracterizado porque hay una raíz central, principal, nítida y dominante sobre las raíces laterales. En las monocotiledóneas y en las pteridófitas, en cambio, el sistema radical de la planta adulta se forma por encima del lugar de origen de la raíz primaria que aborta tempranamente. El sistema radical de estas plantas se denomina homorrizo, fasciculado, en cabellera o fibroso, y está formado por un conjunto de raíces adventicias y se halla profusamente ramificado.3
Las raíces pueden experimentar modificaciones estructurales pronunciadas, que pueden ser consideradas, en la mayoría de los casos, como adaptaciones al medio ambiente, o bien, la consecuencia de una especialización funcional diferente a la función típica de este órgano. Entre éstas se encuentran las raíces reservantes y las raíces especializadas como órganos de sostén y fijación.4 5
La porción de suelo que envuelve a las raíces de las plantas se denomina rizosfera y es una zona donde se producen una serie de relaciones físicas y químicas que afectan a la estructura del suelo y a los organismos que viven en él, proporcionándole unas propiedades diferentes. La rizosfera normalmente ocupa entre unos cuantos milímetros o algunos centímetros alrededor de la raíz. Esta región se caracteriza por el aumento de la biomasa microbiana y de su actividad. La comunidad de la rizosfera consiste en una microbiota (bacteriashongos y algas) y una micro y mesofauna (protozoosnematodosinsectos y ácaros).6 Las micorrizas constituyen una simbiosis especialmente importante, que ocurre en la mayoría de los grupos de plantas vasculares. El término define a la simbiosis entre un hongo y las raíces de una planta. Como en otras relaciones simbióticas, ambos participantes obtienen beneficios. En este caso la planta recibe del hongo principalmente nutrientes minerales y agua y el hongo obtiene de la planta hidratos de carbono y vitaminas que él por sí mismo es incapaz de sintetizar mientras que ella lo puede hacer gracias a la fotosíntesis y otras reacciones internas.7 8 Los nódulos radicales son asociaciones simbióticas entre bacterias y plantas superiores. La más conocida es la de Rhizobium con especies de la familia de las leguminosas. La planta proporciona a la bacteria compuestos carbonados como fuente de energía y un entorno protector, y recibe nitrógeno en una forma utilizable para la formación de proteínas.9
Las raíces evolucionaron en los esporofitos de por lo menos dos linajes diferentes de las plantas vasculares durante su principal radiación adaptativa sobre la Tierra en el período Devónico inferior (hace unos 410 a 395 millones de años). Ese hecho ocurrió aproximadamente unos 15 millones de años después de la aparición de las traqueófitas y unos 50 millones de años después de las primeras embriófitas con afinidad presunta con las briófitas. Ambos grupos se conocen solo por sus esporas pero se supone que tenían algún órgano de anclaje al sustrato.10 Para el Devónico intermedio a tardío, la mayoría de los grupos de plantas desarrollaron un sistema radicular de alguna naturaleza.11 A medida que las raíces se hacían más largas, podían sustentar estructuras aéreas más altas y podían explorar el sustrato a mayor profundidad.12 Esta exploración más eficiente del suelo tuvo profundos efectos ecológicos: no solo permitió a las plantas la conquista de nuevos hábitats sino también la posterior colonización de los mismos por los animales y los hombres


Origen y distribución

La raíz se origina a partir de la radícula del embrión, o polo radical del eje embrionario, y se conoce como «raíz principal» o «raíz primaria». Es la primera de las partes del embrión que se desarrolla durante la germinación de la semilla. La radícula, entonces, con una cubierta en su punta llamada coleorriza, se desarrolla originando la raíz primaria con su tejido de protección en el ápice, denominada caliptra, cofia o pilorriza. La radícula crece y se fija al suelo desde los primeros estadios, de esta modo se garantiza el posterior crecimiento y desarrollo de la planta. En las plantas monocotiledóneas, la radícula aborta en estados tempranos de desarrollo, por lo que el sistema radical está conformado por raíces que surgen de la base del tallo, las que —por ese motivo— se denominan raíces adventicias.2 15
La raíz está presente en todas las plantas vasculares exceptuando algunas pteridófitas —como las psilotáceas— que presentan rizoides. Ciertas espermatófitas especializadas carecen de raíz porque se atrofia el polo radical y el embrión no presenta radícula. Entre estos casos particulares se hallan varias especies de plantas acuáticas, tales como WolffiaUtricularia y Ceratophyllum demersum, y de plantas epífitas como Tillandsia usneoides y algunas orquídeas. Algunas de estas especies pueden formar raíces adventicias para sustituir a la raíz principal.16 En Salvinia, una pteridófita acuática, la función de la raíz es desempeñada por hojas modificadas.3

[editar]Sistema radicular

El conjunto de raíces de una misma planta se denomina sistema radical o sistema radicular. Según su origen y desarrollo se distinguen dos tipos de sistemas radiculares, los cuales están asociados a grupos diferentes de plantas. En las gimnospermas y dicotiledóneas la raíz primaria produce, por alargamiento y ramificación, el sistema radical alorrizo, caracterizado porque hay una raíz central, principal, nítida y dominante sobre las raíces laterales, las que no son morfológicamente equivalentes. El sistema radical generalmente es unitario, presenta ramificación racemosa y acrópeta, es decir, que progresa hacia el ápice. En este sistema la raíz se dice axonomorfa o pivotante, tiene raíces de segundo a quinto orden y crecimiento secundario.1
En las monocotiledóneas y en las pteridófitas, la raíz embrionaria por lo general muere pronto y el sistema radical de la planta adulta se forma por encima del lugar de origen de la raíz primaria. El sistema radical se denomina homorrizo, fasciculado, en cabellera o fibroso, y está formado por un conjunto de raíces adventicias y se halla profusamente ramificado.3 1

[editar]Funciones

La raíz cumple varias funciones en la planta. Por un lado, permite el anclaje o fijación de la planta al suelo. El tamaño relativo de las raíces determinan también la posibilidad de que una planta pueda tener un mayor o menor desarrollo del vástago aéreo. La raíz también permite la absorción del agua y de los nutrientes minerales disueltos en ella desde el suelo y su transporte al resto de la planta. Asimismo, la raíz es el soporte de asociaciones simbióticas complejas con varios tipos de microorganismos, tales como bacterias y hongos, que ayudan a la disolución del fósforoinorgánico del suelo, a la fijación del nitrógeno atmosférico y al desarrollo de las raíces secundarias.3 17 18
Además de estas tres funciones que son generales para todas las plantas superiores, la raíz de algunas especies están especializadas en la acumulación o almacenamiento de reservas. Así, las plantas bienales como la zanahoria (Daucus carota) almacenan en la raíz durante el primer año reservas que utilizarán el segundo año para producir floresfrutos y semillas. En algunas plantas como Isoetes (una pteridófita) y Littorella (una dicotiledónea de la familia de las plantagináceas) las raíces transportan dióxido de carbono para la fotosíntesis, ya que sus hojasusualmente carecen de estomas.3
La raíz, por otro lado, tiene un papel fundamental en la creación y protección del suelo. Las moléculas y enzimas segregadas por las raíces y sus relaciones simbióticas contribuyen a la formación de suelo. Las raíces de numerosos árboles segregan ácidos orgánicos bastante potentes para disolver piedras calizas y liberar el calcio y otros minerales útiles. Además, las raíces de numerosas especies contribuyen a la fijación del suelo y a protegerlo de la erosión hídrica y eólica.18 5

[editar]Morfología


Imagen de una raíz de haba (Vicia faba) y un esquema que ilustra las diferentes zonas de la raíz. (A) Cofia o caliptra, (B)Meristema apical, (C) Zona de alargamiento o crecimiento, (D) Zona pilífera. Los principales tejidos que constituyen la raíz se muestran en el esquema de la derecha.
En la raíz primaria se distingue externamente la caliptra, que se encuentra en el ápice protegiendo al meristema apical, una zona de crecimiento o alargamiento, que es una región glabra de 1 a 2 mm de longitud; la zona pilífera, región de los pelos absorbentes, y la zona de ramificación, una región sin pelos en la cual se forman las raíces laterales y que se extiende hasta el cuello, que la une al tallo.17 5
La proliferación del tejido meristemático o de crecimiento origina las células que, tras su diferenciación, forman los tejidos adultos de la raíz. Entre tales tejidos se encuentran el parénquima, los tejidos vasculares y, en aquellas raíces que se deben engrosar en años sucesivos, meristemas remanentes —como el cámbium y el felógeno— responsables del crecimiento secundario o crecimiento en grosor de la raíz.17
La forma general de las raíces es filamentosa, aún cuando también se puede presentar en forma cónica, oblonga, napiforme, tortuosa o laminar. Cada especie tiene una forma característica, la cual puede modificarse según las diferentes condiciones ambientales en las que la planta crezca. De hecho, su apariencia depende del tipo de sustrato en el que se desarrolle.

[editar]Ramificación de la raíz


Corte transversal de una raíz de arveja (Pisum sativum) a la altura donde se originan dos raíces laterales. Se observan las raíces laterales (RL), el córtex (C) y los polos xilemáticos (PX).
La raíz primaria o principal desarrolla en el suelo un sistema de raíces mediante ramificaciones que van progresando hacia el ápice y ulterior ramificación de las raíces laterales (de primer orden) así formadas. Este sistema puede a veces superar en longitud y extensión al sistema de vástagos que se desarrolla por encima del nivel del suelo. Si se suma la longitud de todas las raíces de una planta se hallan valores sorprendentemente elevados: una planta de trigo, por ejemplo, cultivada en forma aislada, alcanza una longitud total de raíces de unos 80 km.18 Mientras que las ramificaciones del vástago son exógenas —se originan en las yemas— las ramificaciones de la raíz son endógenas, es decir, se originan en los tejidos internos. En las pteridófitas se forman a partir de la endodermis, en las angiospermas y en las gimnospermas, en cambio, se forman en el periciclo. No obstante, todas las ramificaciones de la raíz se inician por divisiones celularesanticlinales y periclinales en un grupo de células que forman el primordio de la raíz lateral, el cual crece, penetra en el córtex y luego continúa creciendo hasta emerger a través de la rizodermis. Antes de que la raíz lateral emerja a la superficie quedan delimitadas todas las regiones anatómicas propias de la estructura de la raíz: el meristema apical, la caliptra, el córtex y el cilindro vascular. El sistema vascular de las raíces laterales es independiente del de la raíz principal, se forma a partir del meristema apical de la raíz lateral, pero la relación entre ambos se establece a través de células intermedias (traqueidas y elementos cribosos) que se originan en el periciclo.19
Cada raíz tiene un número definido de filas de raíces laterales, los que se denominan «rizósticos». Las raíces con más de dos polos de xilema, forman tantas filas de raíces como polos hay. En varias familias de monocotiledóneas con raíces poliarcas —tales como las gramíneas, las juncáceas y lasciperáceas— las raíces laterales se forman frente a los polos de floema, mientras en las dicotiledóneas se forman frente a los polos de xilema. Las bromeliáceas constituyen una excepción dentro de las monocotiledóneas ya que sus raíces laterales se forman frente a los polos de xilema. Por otro lado, en las raíces diarcas, las raíces laterales se originan entre los polos de xilema y floema, razón por la cual presentan cuatro filas de raíces laterales, es decir el doble que el número de polos.19 5

[editar]Raíces adventicias


Raíces adventicias en un nudo del tallo de una planta de Fragaria.
Las raíces adventicias son aquellas que no provienen de la radícula del embrión, sino que se originan en cualquier otro lugar de la planta, como por ejemplo en alguna porción del vástago, en tallos subterráneos y en raíces viejas. Pueden tener o no ramificaciones, pero tienen una forma y un tamaño relativamente homogéneo, formando sistemas radicales fibrosos. Generalmente no presentan crecimiento secundario. Su duración varía, en algunos pastos perennes pueden durar varios años.20 En muchas monocotiledóneas como la gramilla (Cynodon dactylon) y dicotiledóneas como la frutilla (Fragaria), que presentan tallos postrados, en cada nudo nace un fascículo de raíces adventicias.21
Algunas plantas con un solo tallo, como las palmeras Socratea y Pandanus, logran mayor estabilidad desarrollando raíces adventicias llamadasraíces fúlcreas o raíces zancos. Dichas raíces también se encuentran en gramíneas como el maíz y el sorgo. Son gruesas, se originan en los nudos basales y penetran al suelo donde cumplen una doble función: sostén y absorción.5

Esquejes de hiedra (Hedera) mostrando las raíces adventicias que se han formado en sus bases. Cada uno de estos esquejes enraizados permitenpropagar la planta original.
Las raíces adventicias comúnmente se originan de un modo endógeno en la cercanía de los tejidos vasculares del tallo, por lo que se facilita la conexión vascular entre ambos órganos. No obstante, también pueden originarse en la periferia del tallo o cerca del cámbium, en el parénquima interfascicular o en los radios vasculares y también en el periciclo o en la médula del tallo. A veces, las raíces adventicias pueden tener un origen exógeno, ya que se originan en la epidermis y en los tejidos corticales o bien, en los tejidos de los márgenes de las hojas y de los pecíolos.19
La propiedad de muchas especies de formar raíces adventicias a partir de los extremos cortados de sus tallos se utiliza como medio de multiplicación asexual por medio de esquejes. Algunas especies, tales como los sauces y los geranios, arraigan con mucha facilidad, mientras que otras, como las coníferas, casi nunca emiten raíces si los esquejes no son previamente sometidos a un tratamiento especial. Tal tratamiento de los esquejes involucra la aplicación de fitohormonas, compuestos que las plantas sintetizan de forma natural para estimular la formación de raíces nuevas. Casi todos los preparados comerciales de este tipo contienen ácido indolacético, uno de los estimulantes más conocidos para la formación de raíces. En ocasiones, las raíces pueden originarse de las hojas, como ocurre en la violeta africana, especie que se puede propagar sumergiendo en agua el borde cortado de una hoja. Las raíces de algunas plantas también emiten brotes; así, los tallos que se forman a distancias variables de la base del chopo negro brotan desde las raíces del árbol.22

[editar]Anatomía

[editar]Caliptra


Corte longitudinal del ápice de una raíz observado a una magnificación de 10x. (1) Meristema apical de la raíz; (2) Columela de la caliptra, se observan las células (estatocitos) con estatolitos; (3) Porción lateral de la raíz; (4) Células muertas de la caliptra que se desprenden; (5) Células de la zona de elongación.
En el ápice de cada raíz en crecimiento hay una cobertura cónica llamada caliptra, cofia o pilorriza. Usualmente no es visible a simple vista y consiste en tejido blando no diferenciado.17
La caliptra está formada por células parenquimáticas vivas que a menudo contienen almidón. Las células se disponen en hileras radiales, las células centrales forman un eje llamado columela. Las células apicales se diferencian en células periféricas que junto con las células epidérmicas secretan el «mucigel», sustancia viscosa compuesta principalmente por polisacáridos elaborados en los dictiosomas. El extremo de la raíz está revestido de mucigel, envoltura viscosa constituida por mucílago que la protege contra productos dañinos, previene la desecación, es la interfase de contacto con las partículas del suelo y proporciona un ambiente favorable a los microorganismos. Las células periféricas se desprenden a medida que la raíz se abre paso en el suelo.23
La caliptra provee de protección mecánica a las células meristemáticas cuando la raíz crece a través del suelo. Estas células son destruidas por el crecimiento de la raíz y la fricción con el suelo, pero son rápidamente reemplazadas por células nuevas generadas por división celular en la cara externa del meristema de la raíz. A pesar de que continuamente se forman nuevas células en la parte profunda de la caliptra, ésta no aumenta de tamaño porque las células externas se desprenden, se descaman, por gelificación de las laminillas medias. La caliptra también está implicada en la producción demucílago, que es una substancia gelatinosa que cubre a las células meristemáticas recién formadas. Estas células contienen estatolitos, que son granos de almidón que se hallan dentro de la célula y son muy densos, por lo que se mueven en respuesta a la fuerza de la gravedad, proporcionando a la raíz la información necesaria para su crecimiento.23 17

[editar]Rizodermis


Esquema de la anatomía de la raíz primaria.
La rizodermis es la epidermis de la raíz. Típicamente es uniestratificada, es decir, esta compuesta por una sola capa o estrato de células, las cuales son alargadas, muy apretadas entre sí, de paredes delgadas, normalmente sin cutícula.24
En la región adyacente a la caliptra las células de la rizodermis son pequeñas y con citoplasma denso, sin vacuolas. En raíces que conservan su epidermis por largo tiempo, reemplazándola tardíamente por peridermis, las paredes celulares pueden engrosarse, es decir pueden suberificarse (deponer suberina) o lignificarse (deponer lignina). Los pelos radicales se encuentran en la denominada «zona pilífera» de la raíz y son parte de la rizodermis. Pueden originarse en todas las células epidérmicas, en ciertas células llamadas tricoblastos, o en la capa subepidérmica. Son tubulosos, raramente ramificados, con una vacuola central gigantesca, con citoplasma parietal, el núcleo es poliploide y se dispone en el extremo celular que se va alargando. En general viven pocos días, si bien en las gramíneas, por ejemplo, los pelos absorbentes son a menudo persistentes; en Nardus stricta y en las especies de la familia de las compuestas pueden durar 3 a 4 años. La función de los pelos radiculares es la de aumentar la superficie de absorción de la raíz para la toma de agua y nutrientes en solución. Los pelos radicales no se desarrollan en las raíces de plantas hidrófitas, las cuales pueden absorber agua en toda su superficie. Cuando la raíz crece produce nuevos pelos radiculares para reemplazar a los que van muriendo.25 24 17
Muchas orquídeas (en particular, las orquídeas epífitas) y algunas otras monocotiledóneas, como las aráceasciperáceas yveloziáceas presentan una rizodermis especializada denominada velamen. El velamen consta de células muertas a la madurez con engrosamientos de lignina en la pared celular. El velamen constituye una vaina esponjosa y blanquecina que rodea por completo a la raíz. Si el tiempo está seco, sus células están llenas de aire; pero cuando llueve se llenan de agua. Según algunos autores el velamen es un tejido que absorbe agua, según otros nunca se ha observado el paso de agua del velamen al córtex de la raíz. Su función principal parece ser la de protección mecánica, además de impedir la excesiva pérdida de agua de la raíz en períodos de deficiencia hídrica.24 17

[editar]Córtex

El córtex es la región comprendida entre la rizodermis y el cilindro central y su función principal es la de almacenar sustancias de reserva, tales como el almidón. Las capas más externas del córtex, debajo de la epidermis, pueden diferenciarse como un tejido especializado, llamado exodermis. La capa más interna del córtex forma, a su vez, otra estructura especializada en las espermatófitas: la endodermis.26
El córtex propiamente dicho (la zona comprendida entre exodermis y endodermis) tiene en general una estructura homogénea, si bien en algunas especies puede estar formado por varios tipos de células. Las raíces normalmente no presentan clorofila en el córtex, pero frecuentemente las células contienen almidón; pueden encontrarse idioblastos diversos, como por ejemplo células taníferas o cristalíferas; puede presentar estructuras secretoras como espacios intercelulares lisígenos o esquizógenos. En las raíces con crecimiento secundario de las gimnospermas y de las dicotiledóneas que desprenden pronto su córtex, éste es parenquimático. En las monocotiledóneas, en cambio, en las que el córtex se conserva durante mucho tiempo, el esclerénquima se presenta en abundancia. Este tejido puede tener disposición cilíndrica dentro de la exodermis o junto a la endodermis. También puede encontrarse colénquima. El córtex en las plantas acuáticas y palustres, como así también en las gramíneas de hábitats relativamente secos, está constituido por aerénquima. Las raíces aéreas de muchas familias de plantas epífitas, tales como lasorquidáceas y las aráceas, presentan cloroplastos en las células periféricas del córtex.26 5
Exodermis
Las capas más externas del córtex pueden diferenciarse formando la exodermis. Esta zona generalmente no está presente en las pteridófitas. La exodermis está formada por una a varias capas de células vivas, que a veces incluyen esclerénquima. Sus células pueden ser todas alargadas y suberificadas o lignificadas o algunas ser cortas y no estar lignificadas. Las células de la exodermis de las raíces de muchas angiospermas tienen bandas de Caspary y desarrollan muy rápidamente suberina y, en algunas especies, también celulosa. Su función sería la de evitar la pérdida de agua desde la raíz al suelo. Desde un punto de vista tanto estructural como químico la exodermis se parece a la endodermis, y los factores causales de su desarrollo son iguales.26 5

[editar]Endodermis


Anatomía de la raíz primaria de Iris florentina. 1. Célula de paso de la endodermis), 2. Célula del parénquima cortical o córtex, 3. Endodermis, con sus células con engrosamiento en forma de «U», 4. Células del periciclo, 5. Células del floema, 6. Elemento de vaso del xilema
Es una capa de células dispuestas de modo compacto, de aspecto parenquimático que se encuentra en la parte más interior del córtex, rodeando a los tejidos vasculares. Las células que conforman la endodermis contienen una substancia llamada suberina, la cual sirve para crear una especie de barrera impermeable, que se conoce como banda de Caspary. La suberina se dispone transversalmente en la capa de células que forman la banda, en la parte exterior y vía apoplasto queda delimitado el espacio libre de la raíz. Así, el agua sólo puede fluir hacia el centro de la raíz a través de la endodermis.27 La banda de Caspary se inicia con la deposición de películas de sustancias fenólicas y lipídicas en la laminilla media entre las paredes radiales de las células de la endodermis. El grosor de la pared celular aumenta por la deposición de sustancias sobre la cara interna. La membrana plasmática de las células de la endodermis, a su vez, queda fuertemente unida a la banda, constituyendo una barrera que impide a la solución del suelo pasar por apoplasto, forzando de ese modo, a que el agua y las sustancias disueltas en ella pasen a través del citoplasma (simplasto), el cual esselectivamente permeable.17 De este modo, la endodermis divide el apoplasto de la raíz del simplasto, lo que resulta muy conveniente para el desplazamiento selectivo de minerales y agua. Los iones presentes en la solución del suelo pueden difundir libremente en todo el córtex, pero no pueden atravesar la banda de Caspary. Para entrar al cilindro vascular, es decir a la corriente transpiratoria, deben cruzar la membrana plasmática de una célula endodérmica, y así la planta controla qué iones pasan y qué iones son excluidos.17
Cuando se produce el crecimiento secundario, con la formación profunda de peridermis, la endodermis se separa de la raíz con el córtex. Cuando la peridermis se forma superficialmente, la endodermis se estira y se aplasta o se acomoda a la expansión del cilindro vascular por divisiones celulares anticlinales.27

[editar]Cilindro vascular


El cilindro vascular comprende todos los tejidos que se encuentran por dentro de la endodermis, o sea, elsistema vascular y el parénquima asociado. Está delimitado por un tejido llamado periciclo, el cual está formado por una o varias capas de células —en el caso de las gimnospermas y de algunas angiospermas, entre ellas algunas gramíneas— y que excepcionalmente puede faltar, como ocurre en las plantas acuáticas y en las plantas parásitas. Las células del periciclo son parenquimáticas, de paredes delgadas, alargadas, rectangulares en sección longitudinal. Puede contener laticíferos y conductos secretores. A veces la capa de células que la forman queda interrumpida por la diferenciación de elementos del xilema y floema. En las espermatófitasel periciclo tiene actividad meristemática, es decir, funciona como un meristema, ya que origina parte del cámbium, el felógeno y las raíces laterales. En las plantas monocotiledóneas que no sufren crecimiento en grosor el periciclo a menudo se esclerifica en las raíces viejas.28

Con respecto a los tejidos vasculares, el floema forma cordones por debajo del periciclo. En las angiospermas está formado por tubos cribosos y células acompañantes; mientras que en las gimnospermas está formado por células cribosas y raramente se presentan fibras. El xilema está dispuesto también en cordones, los cuales alternan con los de floema y puede estar constituido por vasos y traqueidas. En ocasiones, el xilema no ocupa el centro del cilindro vascular; cuando lo hace, los elementos de mayor diámetro están en el centro. En ese caso, el cilindro vascular se describe como una actinostela como sucede por ejemplo en Clintonia, o protostela. Según el número de "polos" (cordones) de protoxilema se reconocen diferentes tipos de raíz. Con presentan solamente un polo, la raíz se denomina monarca (el caso de Trapa natans, una planta acuática); con dos, diarca (en las pteridófitas y dicotiledóneas tales como DaucusSolanum y Linum); con tres, triarca (Pisum); con cuatro, tetrarca (ViciaRanunculus); con cinco, pentarca, y poliarca con varios polos. Las raíces de las gimnospermas son diarcas o poliarcas.27

[editar]Estructura secundaria


Esquema de una sección transversal de la raíz de una planta dicotiledóneacon crecimiento secundario. A. Estado inicial, B. Crecimiento secundario avanzado. pr: córtex, e: endodermis, c: anillo de cámbium, g': xilema primario, s': floema primario, p: periciclo, g": xilema secundario, s": floema secundario, k: peridermis.
El crecimiento en grosor o crecimiento secundario de la raíz se presenta típicamente en las gimnospermas y en las dicotiledóneas leñosas, en particular sobre la raíz principal y las raíces laterales más importantes. Las ramificaciones de último orden, de hecho, carecen de crecimiento secundario.
Los tejidos secundarios de la raíz son iguales a los tejidos secundarios del tallo, si bien difieren en el lugar en el que aparece el cámbium, ya que la organización de los tejidos vasculares primarios de ambos órganos es distinta. En la raíz, el cámbium se inicia a partir de células procambiales no diferenciadas y en forma de arcos sobre el borde interno del floema. Luego, a partir de las células más internas del periciclo, se forman nuevos arcos por fuera de los polos de xilema. Estos arcos se unen a los anteriores de modo que forman una capa continua que, en sección transversal, tiene forma sinuosa. Finalmente adquiere una forma cilíndrica, debido a que el xilema secundario se deposita más rápidamente sobre el lado interno del floema que en el exterior del protoxilema. En algunas especies, el cámbium que se origina en el periciclo forma radios medulares anchos. Los tejidos vasculares secundarios forman un cilindro continuo que incluye completamente al xilema primario. El floema primario es aplastado y algunas de sus células se diferencian en fibras.29
El xilema secundario de la raíz presenta menor cantidad de fibras, los vasos de tamaño uniforme, una escasa diferenciación de anillos de crecimiento, más elementos parenquimáticos vivos con función de reserva, más almidón y menos taninos que el xilema secundario del tallo. Generalmente en la raíz hay mayor cantidad de floema secundario en relación con la cantidad de leño que la que se observa en el tallo.29

[editar]Peridermis

La peridermis es el revestimiento del cuerpo vegetativo secundario de la planta que sustituye en su función a la epidermis y que se origina por la actividad de un meristema denominado felógeno. En la mayoría de las raíces el felógeno se produce en las células más externas del periciclo y entonces la peridermis es profunda lo que determina el desprendimiento del córtex cuando la raíz sufre crecimiento en grosor. El felógeno también puede originarse cerca de la superficie en algunos árboles y herbáceas perennes en las que el córtex cumple funciones de almacenamiento. En este caso la peridermis es superficial y el córtex se conserva.30 En Citrus la primera peridermis es subsuperficial y las siguientes son profundas. En las raíces de la palmera Phoenix dactylifera hay estructuras lenticelares que forman una especie de collar en torno a las raíces de menor orden.29

[editar]Crecimiento secundario atípico

Varias raíces almacenadoras presentan crecimiento secundario atípico. En la zanahoria y en la remolacha azucarera (Beta vulgaris var. altissima) la raíz principal constituye la parte principal del órgano acumulador de reservas. En el primer caso, la masa principal del tejido reservante está formada por parénquima cortical. En la remolacha azucarera, en cambio, el engrosamiento se produce gracias a la formación sucesiva de varios anillos de cámbium en el parénquima cortical, las cuales se reconocen en el corte transversal debido al color más claro de los elementos leñosos a los que dan lugar. El enorme aumento de diámetro de la remolacha se debe a divisiones celulares y agrandamiento celular que ocurren simultáneamente en todos los anillos, gracias a la limitada formación de elementos xilemáticos lignificados y a la abundancia de células parenquimáticas. La sustancia de reserva, acumulada en el parénquima, es la sacarosa.31 32
En las raíces de batata, Ipomoea batatas, el crecimiento secundario se inicia normalmente, luego se forman cámbiumes adicionales dentro del xilema secundario en torno a los vasos individuales o a grupos de vasos, a partir del parénquima paratraqueal. Estos cámbiumes producen algunos vasos hacia adentro y algunos elementos cribosos hacia afuera, pero sobre todo producen abundantes células parenquimáticas de almacenamiento. El proceso se repite indefinidamente; en estas raíces no se forma una corteza. Presentan laticíferos articulados simples. En el rabanito y otras brasicáceas el primer cámbium es normal, luego prolifera el tejido parenquimático del xilema y allí surgen cámbiumes anómalos que producen tejidos vasculares.32 En Dahlia la tuberización se produce por hipertrofia del xilema secundario, los vasos están dispersos en abundante parénquima leñoso que acumula inulinaDaucus carota almacena principalmente glucosaen las células del parénquima floemático secundario hipertrofiado.29

[editar]Modificaciones morfoanatómicas de la raíz

Las raíces pueden experimentar modificaciones estructurales pronunciadas, que pueden ser consideradas, en la mayoría de los casos, como adaptaciones al medio ambiente o bien como consecuencia de una especialización funcional diferente a la típica. Entre éstas se encuentran:4 5

Ejemplos de raíces reservantes. (A) Nabo, Brassica rapa var. rapa (B) Celidonia menor, Ranunculus ficaria, (C) Rutabaga,Brassica napobrassica, (D) Batata,Ipomoea batatas, (E) Rabanito, Raphanus sativus, (F) Zanahoria, Daucus carota.

[editar]Raíces reservantes

Se presentan principalmente en plantas vivaces, es decir, aquellas donde los órganos aéreos desaparecen durante las épocas adversas, y también en muchas plantas bianuales. En éstas últimas, el órgano de reserva se forma durante el primer año, con una parte aérea muy corta, y en el segundo año el tallo se alarga y produce flores para lo que se utilizan las reservas almacenadas en la raíz. Desde el punto de vista anatómico, existen distintas variaciones estructurales en las raíces reservantes, pero en todas ellas se presenta abundancia de parénquima de reserva. Entre los tipos de raíces reservantes se encuentran:
  • Raíces napiformes, son aquellas raíces principales (axonomorfas) que se engrosan total o parcialmente por acumulación de sustancias de reserva. Consecuentemente, este tipo de raíces sólo se producen en dicotiledóneas. La zanahoria (Daucus carota) y el nabo (Brassica rapa) son ejemplos de este tipo de raíces.18 La mayoría de las veces interviene una gran parte del hipocótilo en su constitución por lo que estos órganos pueden resultar morfológicamente heterogéneos y, a pesar de su semejanza externa, pueden presentar considerables diferencias en su estructura anatómica. Así, en las raíces caulinotuberosas el engrosamiento ocurre tanto en la raíz principal como en el hipocótilo. La remolacha forrajera (Beta vulgaris var. crassa) y el rábano son ejemplos de este tipo de raíz reservante. En el caso del colinabo (Brassica napobrassica) y del apio (Apium graveolens) el segmento del tallo que sigue al hipocótilo, y que incluso presenta hojas normales, también se halla involucrado en el engrosamiento.18
  • Raíces tuberosas: este término se utiliza cuando no solo la raíz principal, sino también las secundarias, o la porción apical de las raíces adventicias provenientes de los nudos inferiores del tallo, acumulan sustancias de reserva y agua, apareciendo todas engrosadas formando tubérculos radicales. Este tipo de raíz es característico de Dahlia, la yuca o mandioca (Manihot esculenta), Ranunculus ficaria y de algunas especies demarantáceas tropicales, como por ejemplo, el lairén (Calathea allouia). Este cultivo poco conocido presenta un rizoma y un sistema radical fibroso, con raíces duras y retorcidas, en el extremo de las cuales se forman las raíces tuberosas, elipsoidales a ovoides que constituyen la parte comestible de la planta. Estas raíces tuberosas miden de 1 a 5 cm de largo por 0,5 a 3 cm de ancho, están cubiertos por una cáscara dura, amarilla y brillante, con protuberancias espinosas. Debajo de la cáscara se encuentra el tejido parenquimatoso color claro a blanquecino que contiene almidón, encontrándose el centro generalmente vacío33 Los tubérculos radicales se asemejan a los tubérculos caulinares —como el de lapapa— ya que, de hecho, son órganos análogos, pero su homología respecto a las raíces se reconoce porque poseen cofia, carecen de yemas o cicatrices foliares y por su estructura anatómica.18
  • Xilopodios: este término se utiliza cuando la raíz principal de un sistema radical axonomorfo se lignifica y reserva agua. Este tipo de raíces es característico de algunas especies subarbustivas de sabanas, donde las precipitaciones son reducidas, razón por la cual se desarrolla tejido que reserva agua (parénquima acuífero) en la raíz. Ejemplo: añil (Indigofera suffruticosa).

[editar]Raíces especializadas como órganos de sostén y fijación

  • Raíces contráctiles: son raíces adventicias, carnosas, largas y turgentes, las cuales se presentan en una cierta etapa del desarrollo de la planta y arrastran al brote cerca o debajo de la superficie del suelo, a un nivel adecuado para su desarrollo. En algunas plantas bulbosas, las raíces contráctiles están muy especializadas y provocan el desplazamiento del bulbo a mayor profundidad del suelo; estas raíces están poco lignificadas y presentan abundante parénquima, teniendo una duración de uno a tres años, al término de los cuales, las reservas se consumen y la raíz se acorta en un 30-40%.
  • Raíces fúlcreas o zancos: son raíces que se originan en la base del tallo y se extienden en forma de arco hasta el suelo, actuando como soporte. Este tipo de raíces se presenta en el maíz, en algunas palmas y en los mangles (Rhizophora). El valor adaptativo de las raíces zancos no ha sido totalmente explicado, pero es evidente su importancia como soporte mecánico de árboles altos e inestables en suelos suaves y poco profundos. Asimismo, estas raíces pueden contribuir a la nutrición de algunas plantas cuyas raíces subterráneas han sido dañadas, en suelos inundados o pobremente aireados.
  • Raíces respiratorias o neumorrizas: algunas plantas palustres presentan neumatóforos, raíces especializadas con geotropismo negativo. En el caso de Ludwigia peploides sobre los estolones se originan dos tipos de raíces: los neumatóforos y otras raíces adventicias, con geotropismo positivo. Los neumatóforos presentan la superficie rugosa, la estela es muy pequeña, y el córtex está formado por un aerénquima particular, constituido por células alargadas dispuestas en capas concéntricas.26
  • Raíces haustoriales: son raíces muy modificadas que se presentan en plantas parásitas y hemiparásitas y están relacionadas con el tipo particular de nutrición de estas plantas. El origen de estas raíces puede ser embrional o adventicio. Las raíces haustoriales son el órgano de fijación y de absorción de estas plantas y representan los sitios en que se establece el contacto entre la planta huésped y la hospedera, considerándose: “órganos chupadores”.

[editar]Otras modificaciones en relación con el ambiente

Las plantas pueden presentar diversas adaptaciones, que responden a las distintas condiciones ambientales en que éstas se desarrollan. Una de las adaptaciones de las raíces a ambientes con escaso suministro de nutrientes en el suelo, especialmente el fósforo, son las raíces proteoides. Este tipo de raíces, denominadas también raíces proteiformes o raíces en racimo,34 son densos conglomerados de raíces laterales cortas y densamente espaciadas. Los conglomerados proteiformes se producen a intervalos de tiempo y distancias variables según la especie. Pueden formar matas de dos hasta cinco centímetros de espesor justo debajo de la superficie del suelo. Mejoran la absorción de nutrientes, posiblemente modificando químicamente el ambiente del suelo para mejorar la solubilización de los mismos. Como resultado, las plantas con raíces proteiformes puede crecer en suelos con escasa cantidad de nutrientes, como los suelos con deficiencia de fósforo, por lo que están presentes en plantas que son colonizadoras de ambientes xéricos.35

[editar]Rizosfera


Diversidad de organismos que interactúan entre sí y con la raíz, conformando la comunidad de la rizosfera. A= ameba que ingiere bacterias, BL=Bacterias limitadas por energía, BU=Bacterias no limitadas por energía, RC=Carbohidratos derivados de la raíz SR=Células descamadas de pelos radiculares, F=Hifas de hongos, N=Nematode.
La rizosfera es una parte del suelo inmediata a las raíces donde tiene lugar una interacción dinámica entre éstas y los microorganismos. Las características químicas y biológicas de la rizosfera se manifiestan en una porción de apenas 1 mm de espesor a partir de las raíces.36 En un sentido más amplio, la rizosfera se puede considerar como la porción de suelo en la que se hallan las raíces de las plantas, ya que es un zona donde se dan toda una serie de relaciones físicas y químicas que afectan a la propia estructura del suelo y a los organismos que viven en él. Normalmente ocupa entre unos cuantos milímetros o algunos centímetros de la raíz. Esta región se caracteriza por el aumento de la biomasa microbiana y de su actividad. La comunidad de la rizosfera consiste en una microbiota (bacteriashongos y algas) y una micro y mesofauna (protozoosnematodosinsectos yácaros).37
Las plantas secretan varios compuestos en la rizosfera que cumplen diversas funciones. Las estrigolactonas, por ejemplo, secretadas y detectadas por los hongos que participan de las micorrizas, estimulan la germinación de las esporas e inician cambios en las micorrizas que les permite colonizar las raíces. La planta parásita Striga también percibe la presencia de las estrigolactonas y sus semillas sólo germinan cuando este tipo de compuestos están presentes. Los rizobios también detectan la presencia de un compuesto secretado por las raíces hacia la rizosfera, el cual todavía no ha sido identificado con certeza, pero que desencadena los procesos que llevan a su colonización de los pelos radiculares y, por ende, a la formación de nódulos.
Algunas plantas secretan aleloquímicos desde sus raíces los que inhiben el crecimiento de otros organismos. Por ejemplo, la especie invasora Alliaria petiolata (brasicáceas) produce una sustancia que se cree que inhibe el desarrollo de asociaciones mutualísticas de otras especies en los bosques templados de Norteamérica.38

[editar]Micorrizas


Esquema de una micorriza vesículo-arbuscular:esporangiohifamicelio, vesícula, arbúsculo.
Las micorrizas constituyen una simbiosis especialmente importante, que ocurre en la mayoría de los grupos de plantas vasculares. El término define a la simbiosis entre un hongo y las raíces de una planta. Como en otras relaciones simbióticas, ambos participantes obtienen beneficios.39En este caso la planta recibe del hongo principalmente nutrientes minerales y agua,8 y el hongo obtiene de la planta hidratos de carbono yvitaminas que él por sí mismo es incapaz de sintetizar mientras que ella lo puede hacer gracias a la fotosíntesis y otras reacciones internas.7Casi el 95% de las familias de espermatófitas forman micorrizas; de hecho, sólo unas pocas familias de angiospermas carecen de ellas: lasbrasicáceas y las ciperáceas.40 Las proteáceas tienen raíces muy finas que parecen desempeñar un rol similar al de las micorrizas. Existen bacterias que favorecen el proceso de micorrización selectivamente, se las denominó «bacterias ayudantes».41 Hay dos tipos de micorrizas, las endomicorrizas y las ectomicorrizas.27 42

Las hifas del hongo Amanita muscaria colonizan las raíces de un árbol formando una ectomicorriza.
Las endomicorrizas son las más frecuentes, ocurren aproximadamente en el 80% de las plantas vasculares. Entre las gimnospermas sólo presentan endomicorrizas Taxus baccataSequoia sempervirensSequoiadendron giganteum y Ginkgo biloba. Los hongos más frecuentes en las endomicorrizas son generalmente Zygomycetes, con hifas no septadas y las asociaciones hongo/hospedante no son muy específicas. Muchas gramíneas las presentan: Andropogon,BromusFestucaPanicumPoaSaccharumSorghumSporobolusStipa y Zea.27 Las hifas de las endomicorrizas penetran las células del córtex de la raíz, sin romper el plasmalema o el tonoplasto. Forman unas estructuras dendroides llamadas arbúsculos o protuberancias llamadas vesículas, que quedan revestidas por la membrana plasmática. Las endomicorrizas se suelen llamar micorrizas vesículo arbusculares por la formación de estas estructuras. El hongo nunca penetra la endodermis, ni la estela, ni el meristema apical, ni la caliptra. Las hifas se extienden varios centímetros por fuera de la raíz, incrementando la cantidad de nutrientes absorbidos. El intercambio entre hongo y hospedante tiene lugar en los arbúsculos, que se llenan de gránulos de fosfatos. Las endomicorrizas son particularmente importantes en los trópicos donde los suelos tienden a retener los fosfatos. La comprensión de las relaciones micorrícicas puede ser la clave para disminuir la cantidad de fertilizantes (especialmente fosfatos) que deben aplicarse a los cultivos para obtener buenas cosechas.43 42
Las ectomicorrizas son características de ciertos grupos de árboles y arbustos de regiones templadas, como lo son varios representantes de las fagáceas (la familia de los robles), las salicáceas(familia de los álamos y sauces), pináceas (pinos y cedros) y géneros como Eucalyptus y Nothofagus. El hongo crece entre las células de la raíz, rodeándolas sin penetrarlas, formando una estructura característica conocida como «red de Hartig». Además las raíces están rodeadas por una vaina formada por el hongo, llamada «manto fúngico»; las hormonas que secreta el hongo provocan la ramificación de la raíz, que adopta un aspecto esponjoso y ramificado. El micelio se extiende mucho hacia el suelo. Los pelos absorbentes a menudo están ausentes, siendo su función reemplazada por las hifas fúngicas.42 Los hongos que forman ectomicorrizas son en su mayoría basidiomicetes, pero hay también muchos ascomicetes. Las asociaciones son muy específicas, pero sin embargo Pinus sylvestris, por ejemplo, puede formar ectomicorrizas con 25 especies de hongos.18

[editar]Nódulos radicales


Raíces de Vicia en las que se pueden observar los nódulos radiculares de color blanco.

Detalle de un nódulo radicular de un planta de Medicago inoculada conSinorhizobium meliloti.
Los nódulos radicales son asociaciones simbióticas entre bacterias y plantas superiores. La más conocida es la de Rhizobium con especies de la familia de las leguminosas. La planta proporciona a la bacteria compuestos carbonados como fuente de energía y un entorno protector, y recibe nitrógeno en una forma utilizable para la formación de proteínas. La simbiosis entre cada especie de leguminosa y de Rhizobium es específica. Por ejemplo, Glycine max, la soja, se asocia con la bacteria Bradyrhizobium japonicum.9 44
El nitrógeno molecular componente mayoritario de la atmósfera, es inerte y no aprovechable directamente por la mayoría de los seres vivos. La fijación de nitrógeno es el proceso por el cual este elemento se combina con oxígeno o con hidrógeno para dar óxidos o amonio que pueden incorporarse a la biosfera. Estas reacciones ocurren de forma abiótica en condiciones naturales como consecuencia de las descargas eléctricas o procesos de combustión y el agua de lluvia se encarga de arrastrar al suelo los compuestosformados, o bien se derivan de la síntesis química realizada en la industria de fertilizantes con un alto consumo de energía. La reducción de este elemento a amonio llevada a cabo por bacterias en vida libre o ensimbiosis con algunas especies de plantas se conoce como fijación biológica del nitrógeno (FBN).
La fijación biológica del nitrógeno es un proceso muy antiguo que probablemente se originó en el Eón arqueano bajo las condiciones de ausencia de oxígeno de la atmósfera primitiva. Es exclusivo de Euryarchaeota y en seis de los más de 50 phyla de bacterias. Algunos de estos linajes coevolucionaron conjuntamente con las angiospermasestableciendo las bases moleculares de una relación de simbiosis mutualista. Los nódulos son las estructuras especializadas dentro de las cuales se lleva a cabo la FBN que algunas familias de angiospermas han desarrollado, principalmente en la corteza radicular. Las fanerógamas que han coevolucionado con diazótrofos actinorrícicos o con los rizobios para establecer su relación simbiótica pertenecen a once familias que se agrupan dentro del clado Rosidae de la filogenia molecular del gen rbcL que codifica parte de la enzima RuBisCO en el cloroplasto. Este agrupamiento indica que probablemente la predisposición a la formación de nódulos surgió una sola vez en las angiospermas y podría ser considerado como un carácter ancestral que se ha conservado o perdido en ciertos linajes. Sin embargo, la distribución tan dispersa de familias y géneros nodulantes dentro de este linaje, indica que la nodulación tiene múltiples orígenes.9
Los rizobios entran en los pelos radicales, que se deforman. La bacteria degrada la pared celular del pelo radicular y la penetra; el crecimiento del pelo se altera y se forma hacia adentro una estructura tubular llamada «hebra de infección». La hebra se dirige a la base del pelo y a través de las paredes celulares va al interior del córtex. Las bacterias inducen la división celular en las células corticales, las cuales se vuelven meristemáticas. Cuando los rizobios son liberados de las hebras de infección y penetran en las células radicales, quedan envueltos por invaginaciones de la membrana plasmática de los pelos radicales.



 ¿ Qué son los tallos?

El tallo es la parte de la planta opuesta a la raíz. Generalmente, crece en sentido vertical hacia la luz del sol. A partir del tallo, se desarrollan las ramas en donde nacerán las hojas, las flores y los frutos. Por el interior del tallo circula la savia, constituida por la mezcla de agua y minerales que la planta absorbe del suelo.
El tallo principal es el tallo más importante de la planta. De él comienzan a salir los tallos secundarios. Los nudos son unos engrosamientos situados en los tallos . A su altura es donde nacen las hojas. Las yemas tienen la función de realizar el crecimiento de los tallos.



Según la mayor o menor dureza de los tallos, los clasificamos en leñosos o herbáceos. Las hierbas constituyen los típicos vegetales con tallos herbáceos, que son aquellos que se caracterizan por ser blandos , flexibles y de color verde. Por ejemplo, La amapola, o la manzanilla poseen tallos herbáceos.
Los árboles o los arbustos tienen los tallos más duros y suelen ser más grandes que las hierbas. Son ejemplos de árboles el pino o el cerezo. El romero es un arbusto típico.
Algunos tallos de color verde son capaces de realizar la función de la fotosíntesis. Otros tallos se han transformado y son capaces de almacenar substancias de reserva. Muchos de estos tallos son comestibles y los utiliza el hombre para alimentarse tal como, por ejemplo, las patatas . Hay tallos que son capaces de almacenar mucha agua y resistir mucho tiempo de sequía, tal como ocurre con los cactus.



Funciones

Es el eje de la planta que sostiene las hojas, órganos de asimilación con forma aplanada, las cuales se disponen de un modo favorable para captar la mayor cantidad de radiación solar con el mínimo sombreamiento mutuo (ver filotaxis). En las plantas que no presentan hojas identificables como tales, como en la mayoría de las cactáceas, el tallo se encarga de la fotosíntesis. En el momento de la reproducción, el tallo sostiene también las flores y los frutos. En muchas especies, el tallo es además uno de los órganos de reserva de agua y fotoasimilados, especialmente con antelación a la etapa reproductiva.
No obstante, la función principal del tallo es la de constituir la vía de circulación de agua entre las raíces y las hojas de las plantas. Puede tener muchos metros de altura, el tallo leñoso más largo que se conoce es el de la palmera trepadora Calamus manan de 185 m.5
El flujo de agua a través de la planta se realiza debido a las diferencias en el potencial hídrico entre la atmósfera y el suelo, siendo el xilema el tejido conductor. El flujo de agua en el xilema es un proceso físico, en donde la energía necesaria para que se lleve a cabo proviene de la transpiración del agua desde los estomas de las hojas hacia la atmósfera. Como consecuencia de tal transpiración, se produce una deficiencia de agua en las células del mesófilo de la hoja, el cual hace que el agua fluya desde las células más internas con un mayor potencial de agua. La deficiencia hídrica inicial se propaga sucesivamente hasta llegar a la altura de los conductos del xilema. La naturaleza capilar del xilema, las propiedades de cohesión de las moléculas de agua entre sí, la adhesión del agua a las paredes celulares y la tensión desarrollada por diferencias en el potencial hídrico originadas en la transpiración, permiten en conjunto, el movimiento de la columna de agua desde la raíz hasta las hojas.7 8 9

[editar]Morfología

El tallo, en general, es un órgano cilíndrico que posee puntos engrosados –nudos- sobre los que se desarrollan las hojas. A la porción de tallo situada entre dos nudos consecutivos se le denomina entrenudo. Presenta además una yema terminal en el extremo apical y varias yemas axilares que se diferencian en las axilas de las hojas.

[editar]Yemas

Una yema es el extremo joven de un vástago, y por lo tanto además del meristema apical, lleva hojas inmaduras o primordios foliares. La yema situada en el extremo del eje es la yema terminal, mientras que las que se encuentran en la unión de las hojas con el tallo son las yemas axilares. En ciertos casos es difícil distinguir las yemas del resto del tallo, especialmente cuando los primordios no están claramente agrupados, como sucede en el espárrago (Asparagus officinalis) y en especies de gran porte de las monocotiledóneas como Agave y Pandanus.
De acuerdo a su estructura se distinguen dos tipos de yemas, las yemas escamosas y las yemas desnudas.
El ápice de las yemas escamosas está protegido por hojas modificadas con aspecto escamoso, dispuestas apretadamente. Generalmente estas escamas, pérulas o tegmentos son oscuras y coriáceas, cumplen el rol de protección del ápice vegetativo. Las escamas, estrechamente aplicadas unas sobre otras y provistas de una gruesa cutícula, impiden la desecación de los tejidos embrionales durante el invierno, cuando la circulación de la savia es más lenta. Si se hace un corte longitudinal de la yema, se observa, por debajo de las escamas protectoras el ápice vegetativo, asiento del meristema apical del tallo y los primordios foliares. Cuando en la primavera el meristema inicia su actividad, las escamas caen, y los primordios foliares se desarrollan en hojas adultas. En Eucalyptus las yemas pueden tener hasta 50 pares de primordios foliares. Suelen tener pelos en abundancia que retienen el aire y constituyen un abrigo para el meristema, protegiéndolo de las variaciones térmicas bruscas. Las escamas pueden tener coléteres, estructuras glandulares secretoras de sustancias pegajosas como mucílagos y resinas, que contribuyen a la defensa contra la desecación al asegurar una mayor impermeabilidad; son comunes sobre todo en las plantas de deciduas. Las yemas desnudas están desprovistas de escamas protectoras y en este caso generalmente están protegidas por las hojas jóvenes. Estas yemas se presentan generalmente en plantas herbáceas.10
Las yemas axilares son generalmente únicas, es decir que en la axila de cada hoja nace una sola yema; en algunas especies, sin embargo, pueden presentarse yemas axilares múltiples o supletorias que originan flores, ramasespinas o zarcillos. Según cómo estén dispuestas, hay dos tipos de yemas múltiples: seriales y colaterales. Las yemas seriales están situadas una por encima de la otra en la axila de la hoja tectriz, formando una fila vertical, como por ejemplo en el mburucuyá (Passiflora caerulea), en la madreselva (Lonicera japonica) y en la santa rita (Bougainvillea spectabilis), como así también están presentes en las bignoniáceas, las fabáceas y las rubiáceas). Las yemas colaterales o adyacentes se encuentran situadas una al lado de la otra en la axila de una misma hoja formando una fila horizontal. En el ajo (Allium sativum), cada diente es una yema axilar; en las inflorescencias del bananero (Musa) cada conjunto de yemas originará una "mano" de bananas. También están presentes en las aráceas y en las palmeras.10
El fenómeno de la caulifloria (árboles o arbustos que producen las flores en el tronco y en las ramas añosas) se debe al desarrollo tardío (años o décadas después) de yemas durmientes que quedan en la corteza del tallo.10

[editar]Dirección de crecimiento y simetría

Cuando el tallo se eleva verticalmente sobre el suelo, la planta se dice erecta y el eje ortótropo. En tal caso las ramas suelen desarrollarse radialmente alrededor del eje principal y cada rama crece horizontalmente y muestra simetría radial. En cambio, cuando el tallo principal crece en dirección horizontal su crecimiento se denomina plagiótropo. La planta en este caso se dice postrada o reptante, y su simetría suele ser dorsiventral.5

[editar]Sistemas de ramificación


Ramificación dicotómica enPsilotum nudum.

Ramificación monopodial en Araucaria columnaris.

Ramificación simpodial enFoeniculum vulgare.
Entre los cormófitos existen especies con un solo tallo, tales como el maíz Zea mays o la azucena Lilium longiflorum, cuyo vástago no se ramifica, excepto en lainflorescencia. Por otro lado, existen plantas con muchos tallos (pluricaules) cuyo vástago se ramifica. Hay dos tipos básicos de ramificación, la ramificación dicotómica y la ramificación lateral.1
En la ramificación dicotómica el ápice se divide en dos por división de la célula apical. Se trata de una ramificación típica de plantas muy primitivas, tales como loslicopodios (Lycopodium y Psilotum). En la mayoría de los casos, las yemas se parten, originando siempre dos ramas; en otros, como por ejemplo en Lycopodium complanatum, la yema deja de crecer, y dos células próximas a ésta se diferencian, formando una rama nueva cada una. En las espermatófitas este tipo de ramificación es muy poco frecuente, sólo ha sido confirmada en algunas palmeras (tales como Nypa, Hyphaene y Chamaedorea), en ciertas cactáceas(Mammillaria) y en las flagelariáceas (lianas monocotiledóneas del Viejo Mundo).2 11 3
La ramificación lateral es el tipo dominante en las espermatófitas. En las espermatófitas, donde la ramificación es axilar (originada en el ancestro común a todas ellas), las ramas se originan en yemas axilares, a partir de la segunda o tercera hoja desde el ápice. En las pteridófitas es usual que las yemas se originen sobre la cara abaxial de las hojas o del pecíolo. Existen dos tipos básicos de ramificación lateral: la ramificación monopodial y la simpodial.
En la ramificación monopodial o sistema monopódico de ramificación, la yema apical crece y se desarrolla mucho más que las axilares, las que pueden incluso estar atrofiadas. La apariencia externa de las plantas que presentan este tipo de ramificación es la de un eje central robusto del cual salen unas ramitas muy delgadas, como es el caso de las coníferas. También puede observarse este tipo de ramificación en plantas herbáceas. Así, algunos rizomas crecen principalmente de manera monopódica: el eje principal se desarrolla en forma subterránea y más o menos rápidamente, y los vástagos aéreos se originan en yemas axilares. Debido a esta característica, las plantas con este tipo de rizoma tienen tendencia a ser muy invasoras, como el el caso del sorgo de Alepo (Sorghum halepense).
En el sistema simpódico de ramificación las ramas laterales se desarrollan más que el eje principal. El eje madre puede incluso interrumpir por completo su crecimiento, porque su yema apical queda en reposo o se transforma en una flor. Entonces una o varias yemas axilares, generalmente las superiores, se encargan de continuar el crecimiento y de formar nuevos brotes laterales, o sea, de proseguir su ramificación. Tanto las yemas apicales como axilares se desarrollan de la misma forma, sin que haya ningún tipo de dominancia. Aunque el eje central sigue siendo notorio, rápidamente las ramas alcanzan el mismo desarrollo. En regiones extratropicales, en las montañas de zonas tropicales y en climas tropicales secos, muchas plantas presentan crecimiento simpodial: la yema terminal muere pronto y es reemplazada por yemas laterales. La ramificación simpodial está ampliamente extendida en las dicotiledóneas herbáceas y se observa en prácticamente todas las monocotiledóneas.12 2 11 3

[editar]Macroblasto y braquiblasto

En las plantas leñosas el crecimiento del tallo se efectúa en dos momentos y lugares distintos. En una primera fase, en la yema tiene lugar el crecimiento apical, por multiplicación de las células meristemáticas. De este modo se forman primordios foliares separados por entrenudos extremadamente cortos. Cuando la yema se va desarrollando, el tallo continúa elongándose por crecimiento intercalar de los entrenudos, primero los basales y luego los apicales. Este crecimiento ocurre por elongación celular más que por división. Según el grado de desarrollo de los entrenudos se distinguen dos tipos de ramas:5
  • Macroblastos o ramas largas, son los ejes con un importante crecimiento de los entrenudos y, por lo tanto, presentan hojas bien separadas entre sí.
  • Braquiblastos o ramas cortas, son los ejes con crecimiento internodal reducido y por lo tanto hojas muy próximas entre sí, dispuestas muchas veces en roseta. Las plantas brevicaules en roseta o rosuladas (mal llamadas acaules) son ejemplos de braquiblastos. Tal es el caso del repollo (Brassica oleracea var. capitata), la remolacha (Beta vulgaris), el rábano (Raphanus sativus), la lechuga (Lactuca sativa), especies de Agave y el llantén (Plantago).5
Ambos tipos de ramas pueden encontrarse en la misma planta. En los pinos (Pinus), por ejemplo, los macroblastos tienen hojas con forma de escamas en cuyas axilas se producen braquiblastos que llevan las hojas aciculares típicas de estas especies. En Ginkgo los braquiblastos llevan hojas flabeladas y estructuras reproductivas masculinas. En el peral (Pyrus communis) y en el manzano (Malus sylvestris) las flores nacen sobre braquiblastos.5

[editar]Tipos de tallos

Los tallos pueden clasificarse desde diversos puntos de vista, los cuales van desde la consistencia hasta las modificaciones adaptativas que pudieran presentar.13 2 11 3
Por su hábito
  • Epígeos o aéreos: son todos aquellos tallos que crecen, como su nombre lo indica, por encima de la tierra. Incluyen los tallos normales con auténticas hojas y los estolones, siendo éstos brotes laterales más o menos delgados y generalmente muy largos (como es el ejemplo de la frutilla, Fragaria). De acuerdo con la dirección que sigue su crecimiento, los tallos aéreos pueden ser rectos o ascendentes si crecen de forma vertical, o rastreros si crecen de forma horizontal sobre la tierra.
  • Hipógeos o subterráneos: son los tallos que crecen debajo de la tierra y presentan catáfilos (hojas rudimentarias). Dentro de este tipo de tallos se hallan los tubérculos, los rizomas y losbulbos, los cuales se describen a continuación:
    • Rizomas: son tallos subterráneos de longitud y grosor variables, que crecen horizontalmente a profundidades diversas según las especies. Los nudos llevan hojas pequeñas, y cada año producen raíces que penetran en el suelo y tallos aéreos de vida corta —como es el caso del olluco— o simplemente un grupo de hojas formando un pseudotallo (como por ejemplo, el lirio, Iris germanica). Frecuentemente, los rizomas actúan como órganos de reserva de nutrientes.
    • Tubérculos: son tallos que almacenan sustancias nutritivas. Tienen crecimiento limitado, no presentan habitualmente raíces y suelen durar un solo periodo vegetativo. En su superficie se observan catáfilos y yemas (denominadas “ojos”) y lenticelas.
    • Bulbos: son tallos muy cortos y erectos, usualmente con forma de disco y con una yema terminal rodeada de varias hojas carnosas, densamente superpuestas, convertidas en órganos de reserva, llamadas catáfilos, que recubren el ápice y lo protegen.
    • Cormos: se trata de tallos aplanados y de reserva con nudos y entrenudos muy cortos.
Según su consistencia,
  • Herbáceos: se trata de aquellos tallos que nunca desarrollan tejidos adultos o secundarios, por lo que tienen una consistencia suave y frágil.
    • Escapo: es una tallo cuya única función es la de servir de sostén a las flores y, posteriormente, a los frutos. Una vez terminada su función, el escapo se seca y se cae. Puede presentar ramificaciones.
    • Caña: es un tallo herbáceo macizo o hueco que no se ramifica. Es el tallo típico de las poáceas.
    • Cálamos: son tallos aéreos, cilíndricos, que no presentan nudos, como por ejemplo, los tallos de los juncos (Juncus).
    • Volubles: son tallos flexibles y enrollables en un soporte, como por ejemplo el del poroto (Phaseolus).
    • Trepadores: son aquellos tallos que se fijan a un soporte mediante zarcillos, como por ejemplo los tallos de la vid (Vitis).
  • Leñosos: son tallos rígidos y duros, sin color verde ya que no presentan clorofila.
    • Arbustivos o Sufrútices: llegan a desarrollar tejidos secundarios, pero sólo en la región próxima a la base, manteniendo la parte superior de la planta siempre con tejidos jóvenes.
    • Arbóreos: Son tallos que desarrollan tejidos secundarios por completo, limitando los primarios a las yemas tanto apicales como axilares. Son de consistencia dura, la que se debe a la acumulación de súber en ellos.
    • Estípite: Son aquellos tallos monopodiales en los que la única yema que se desarrolla es la apical, quedando todas la demás atrofiadas. Es el caso de la mayoría de las palmeras.
  • Carnosos o suculentos
Según las modificaciones estructurales que presenten, los tallos pueden ser
  • Zarcillo caulinar: es un tallo muy delgado que ha perdido la capacidad de formar hojas y flores. Su función es la de permitirle a la planta trepar o arrastrarse por diversas superficies.
  • Espina caulinar: se trata de una rama modificada y muy lignificada que sirve como defensa contra los depredadores.
  • Estolón: es un tallo cuya yema apical tiene la capacidad de formar raíces adventicias, lo que le permite formar una nueva planta.
Tallos fotosintéticos:
Son aquellos tallos que han asumido las funciones de las hojas. Son propios de plantas que, por razones adaptativas, han dejado de formar hojas o estas se redujeron hasta volverserudimentarias, o fueron modificadas hasta perder la capacidad fotosintética. Estos tallos, a su vez, pueden ser:
  • platíclados, son tallos aplanados y fotosintéticos que puede tener la forma de una hoja, como los filodios o filóclados, los cuales son ramas aplanadas y de aspecto foliáceo, que puede llevar flores.
  • cladodios, son tallos planos y suculentos, típicos de muchas especies de cactáceas (Opuntia por ejemplo), los que además de la función de fotosíntesis también están especializados en el almacenamiento de agua. A diferencia de los filodios, estos tallos fotosintéticos presentan crecimiento indeterminado.

[editar]Anatomía


Esquema de las secciones longitudinal y transversal del tallo de una planta dicotiledónea, mostrando los meristemas y tejidos derivados que determinan el crecimiento primario y secundario del tallo.

Corte transversal de un tallo de lino en el que se observa la estructura primaria del tallo. 1- médula 2-protoxilema 3-xilemaprimario 4-floema primario 5-fibras deesclerénquima 6-corteza 7-epidermis

Detalle de un haz vascular en corte transversal de un tallo de Clematis. La flecha señala el floema, hacia arriba se observan los grandes vasos del xilema.
El tallo está constituido por tres sistemas de tejidos: el dérmico, el fundamental y el vascular o fascicular. Las variaciones en la estructura de los tallos de diferentes especies y de los taxones mayores se basan principalmente en las diferencias en la distribución relativa de los tejidos fundamental y vascular. En las coníferas y dicotiledóneas el sistema vascular del entrenudo aparece como un cilindro hueco que delimita una región externa y una interna de tejido fundamental, la corteza y la médula, respectivamente. Las subdivisiones del sistema vascular, los haces vasculares, están separados unos de otros por paneles más o menos amplios de parénquima fundamental -llamado prenquima interfascicular- que interconecta la médula y la corteza. Este tejido se denomina interfascicular porque se encuentra entre los haces o fascículos. El parénquima interfascicular a menudo se llama también radio medular. Los tallos de muchos helechos, algunas dicotiledóneas herbáceas y la mayoría de lasmonocotiledóneas tienen una ordenación compleja de tejidos vasculares. Los haces vasculares pueden hallarse en más de un anillo o pueden aparecer dispersos por toda la sección transversal del tallo. La delimitación del tejido fundamental en corteza y médula es, en estos casos, menos precisa o no existe.4 El crecimiento en longitud del tallo se debe a la actividad de los meristemas apicales y al alargamiento subsecuente de los entrenudos y se denomina crecimiento primario. El crecimiento secundario se caracteriza por el aumento del grosor del tallo y es el resultado de la actividad de los denominados meristemas secundarios (cámbium y felógeno). Este tipo de crecimiento es característico de las gimnospermas, la mayoría de las dicotiledóneas y algunas monocotiledónes.4

[editar]Estructura primaria del tallo

En un corte transversal, el tallo es generalmente cilíndrico, aunque a veces puede ser aplanado, triangular o cuadrangular. El sistema vascular primario consiste en un cilindro completo o bien en un sistema de haces vasculares discretos. La epidermis del tallo frecuentemente lleva estomas y tricomas, al igual que la de las hojas. La corteza es la región entre los tejidos vasculares y la epidermis. Esta corteza primaria o córtex está formada por tejidos fundamentales, en algunos casos sólo parénquima con función asimiladora o reservante, y en otras ocasiones también por colénquimaesclerénquima o ambos, con función mecánica. El conjunto entre la corteza y la región vascular se denomina región pericíclica, de donde pueden surgir las raíces adventicias. El cilindro central o estela es también llamado cilindro vascular primario, ya que está constituido por los tejidos conductores (floema y xilema primarios). Dichos tejidos en dicotiledóneas pueden formar un cilindro hueco (cuyo centro está ocupado por una médula parenquimatosa), o bien aparecer en forma de haces o cordones dispuestos en círculo alrededor de una médula parenquimatosa y separados entre sí por porciones parenquimáticas, llamadas radios medulares, que comunican la médula con la corteza. En monocotiledóneas, el floema y xilema primarios conforman haces que se distribuyen de manera dispersa y, por lo tanto, no se distingue médula ni radios medulares. En el tallo la disposición de los tejidos vasculares es generalmente colateral, con el floema primario dirigido hacia el exterior y el xilema primario hacia el interior, o sea, hacia el centro del tallo. Sin embargo, pueden existir otras disposiciones, por ejemplo, haces vasculares concéntricos. La médula es la región central del tallo, formada por tejido parenquimático, si bien en muchas especies puede reabsorberse y formar una cavidad central hueca.14 4

[editar]Estela

El sistema formado por los tejidos vasculares en el eje de la planta, tallo y raíz, se denomina estela. El concepto de estela se elaboró para estudiar las relaciones y homologías en la estructura del vástago de diferentes grupos de plantas. Hay tres tipos básicos de estela según la distribución relativa del sistema vascular y el sistema fundamental de los ejes en estado primario de desarrollo: protostela, sifonostela y eustela, cada uno con variantes.4
La protostela es una columna sólida de tejidos vasculares ubicada en posición central. Es el tipo más simple y el más primitivo filogenéticamente, el cual se ha hallando en plantas fósiles como Psilophyton, una pteridófita de la era Paleozoica. La protostela se encuentra en algunas pteridófitas actuales, como Psilotum y Gleichenia, también en tallos de angiospermas acuáticas. Existen algunas variantes de la protostela. Así, cuando la columna de xilema tiene forma estrellada en el corte transversal, recibe el nombre de «actinostela». Cuando el xilema está fraccionado en varias placas, se habla de «plectostela».15
En la sifonostela, el sistema vascular tiene forma de tubo, envolviendo una médula parenquimática. No presenta lagunas foliares. Según la posición del floema, se distinguen dos tipos: la sifonostela anfifloica, con el floema por fuera y por dentro, sin lagunas foliares. Es exclusiva de las pteridofitas (GleicheniaceaeSchizaeaceaeMarsileaceae) y la sifonostela ectofloica, en la que el floema se encuentra por fuera del xilema. Este último tipo se encuentra en los tallos de algunas pteridófitas y en raíces de Spermatophyta. La dictiostela es una variante de la sifonostela anfifloica con lagunas foliares muy grandes, que están superpuestas o solapadas. El sistema vascular, visto a lo largo, parece una red cilíndrica. En corte transversal cada segmento es un haz vascular concéntrico perifloemático. Se presenta, por ejemplo, en PolypodiumMicrogrammaDryopteris.
En la eustela el sistema vascular consta de haces vasculares organizados en simpodios, dispuestos alrededor de una médula. Las lagunas foliares pueden o no estar delimitadas (como en el caso de las gimnospermas y las dicotiledóneas), según que el sistema vascular sea cerrado o abierto. Los haces vasculares son abiertos, con cámbium fascicular, ya que la mayoría de estas plantas presenta crecimiento secundario. La atactostela es una variante de la eustela, característica de las monocotiledóneas, con haces vasculares colaterales o concéntricos esparcidos regularmente en todo el tallo debido a su recorrido longitudinal sinuoso. Los haces vasculares son cerrados, ya que este grupo de plantas no presenta crecimiento secundario.15
Actualmente se sabe que la estela de las plantas con semilla (epermatófitos) no ha evolucionado a partir de la sifonostela de los helechos, sino que se ha formado por fragmentación de una protostela, del tipo hallado en las primeras plantas con semilla (Progimnospermas).15

[editar]Estructura secundaria

La estructura secundaria del tallo se debe a la actividad de los meristemas laterales: cámbium vascular y felógeno. El primero actúa en el cilindro central, entre el floema y xilema primarios y el segundo se sitúa periféricamente, en la corteza o la epidermis. Ambos meristemas producen nuevas células en sentido radial, por lo que su actividad incrementa el grosor del tallo. Como consecuencia de la actividad cambial se origina floema secundario y células parenquimáticas (radios vasculares) hacia afuera, y xilema secundario y radios vasculares hacia adentro. El felógeno produce hacia el interior células parenquimáticas (felodermis) y hacia el exterior corcho (súber o felema). El conjunto de estas tres capas: felógeno, felodermis y corcho constituye la peridermis, la cual es la protección exterior del tallo cuando la epidermis se desgarra durante el crecimiento en grosor. Existen tallos que sólo producen una peridermis, pero también hay otros donde aparecen nuevas peridermis en zonas cada vez más internas, intercaladas con capas de tejidos aisladas por ellas. En esta situación se habla de ritidoma o corteza externa. La acción del cambium vascular genera más cantidad de tejido vascular que finalmente puede disponerse como un cilindro o quedar confinado a los haces vasculares existentes previamente. Cuando se forman cilindros, la cantidad de xilema secundario puede ser muy grande y se designa como madera o leño, y a los tallos con tal característica se les llama leñosos, en contraste con los tallos herbáceos que no producen tanta cantidad de xilema secundario (en cilindro o haces) o bien sólo tienen tejidos primarios. El floema secundario se produce en menor cantidad que el xilema y puede denominarse también líber, aunque este término se aplica igualmente al floema primario.16 17 18 4

[editar]Madera, albura y duramen

En la mayoría de los árboles la parte interna del leño (xilema secundario originado por actividad del cámbium) cesa su actividad conductora de savia y sus células parenquimáticas mueren, debido fundamentalmente a la desintegración del protoplasma, al reforzamiento de las paredes con más lignina, a la acumulación en el lumen o impregnación de las paredes con sustancias orgánicas e inorgánicas (tales como taninos, aceites, gomas, resinas, colorantes, compuestos aromáticos, carbonato de calcio, silicio) y al bloqueo de los vasos con tílides. El leño que ha sufrido estos cambios es el duramen, inactivo y más oscuro. Cuanto mayor es la impregnación, mayor es la resistencia a los microorganismos que provocan la pudrición. La porción clara, externa, activa, con células vivas es la albura. La proporción albura-duramen varía entre las distintas especies, como también varía el grado de diferenciación entre ambas.19

[editar]Estructura del xilema secundario

La estructura característica del xilema secundario es la existencia de dos sistemas de elementos, que difieren en la orientación de sus células: uno es horizontal y el otro es vertical. El denominado sistema vertical, longitudinal o axial está compuesto por células o filas de células con el eje mayor orientado longitudinalmente, formado por elementos conductores no vivos y células parenquimáticas vivas. El sistema horizontal, transversal o radial está compuesto por hileras de células orientadas radialmente, formado por células vivas principalmente, las células parenquimáticas de los radios medulares. Las células vivas de los radios y del sistema axial se encuentran generalmente en conexión formando un sistema continuo.

El cámbium produce elementos de mayor diámetro en primavera (leño temprano) y de menor diámetro y paredes más gruesas en invierno (leño tardío). De ese modo, la actividad de todo el año origina un anillo de crecimiento. Cada año se suma un nuevo anillo de crecimiento, los cuales pueden contarse a simple vista en el corte transversal de un tronco. En la imagen se observa un anillo de crecimiento en Robinia pseudoacacia, obsérvese la diferencia de diámetro de los poros entre el leño temprano y el leño tardío.
El xilema secundario producido durante un período anual de crecimiento constituye una capa, que en corte transversal de tallo se llama anillo de crecimiento. Si se observa a simple vista tiene una parte clara, que es el leño temprano o de primavera, menos denso, con células de mayor diámetro y una parte oscura, que es el leño tardío, sus células son pequeñas y de paredes más gruesas. Esto ocurre generalmente en especies arbóreas que habitan en regiones de clima templado.20
En las gimnospermas el tejido leñoso está constituido principalmente por traqueidas, elementos imperforados con puntuaciones areoladas. En un anillo de crecimiento se distingue el leño temprano formado por traqueidas, las cuales son de mayor diámetro, y el leño tardío caracterizado por la presencia de fibrotraqueidas de paredes gruesas, lumen reducido y puntuaciones areoladas con abertura interna alargada. Las traqueidas y fibrotraqueidas miden entre 0,1 a 11 mm de longitud. Los radios medulares se hallan formados por una sola hilera de células, por lo que se denominan uniseriados. Pueden estar formados sólo por células parenquimáticas, como en los radios homocelulares, o también por traqueidas cortas, dispuestas en forma horizontal, como en los radios heterocelulares. El área de contacto entre un radio y las traqueidas del sistema vertical se denomina campo de cruzamiento. El tipo de puntuaciones, su número y su distribución son caracteres importantes para la identificación de las maderas de las diferentes especies de gimnospermas. Cuando presentan un canal resinífero los radios se denominan fusiformes.21 4
El xilema secundario de las angiospermas es más complejo que el de las gimnospermas, razón por la cual se los describe como heteroxilo. Anatómicamente las diferencias son el resultado de la ordenación de los elementos de vasos, fibras y parénquima axial en un corte transversal. El elemento conductor de las dicotiledóneas son los miembros de vasos. En corte transversal se denominan "poros"; en las paredes laterales, los miembros de vaso poseen puntuaciones areoladas, en algunas maderas, estas puntuaciones presentan la abertura interna adornada, denominándose puntuaciones ornadas. La disposición de los poros en corte transversal se denomina porosidad. Si los vasos son de tamaño uniforme y se distribuyen más o menos homogéneamente a través del leño se dice que la porosidad es difusa, Ej.: Populus albaEucalyptus y Olea europaea. Si los vasos son de diferentes tamaños, y los formados en el leño temprano son notablemente mayores que los del final del anillo de crecimiento, la porosidad se conoce como circular o anular, ej.: Quercus. Los casos intermedios se denominan porosidad semianular. El arreglo de los vasos puede verse en corte transversal, variando en bandas tangenciales, cuando los vasos están ordenados perpendiculares a los radios, las bandas pueden ser rectas u onduladas; en un diseño radial o diagonal, o en un diseño dendrítico cuando su organización presenta un diseño con ramificaciones. Los radios pueden ser uniseriados o multiseriados, o sea, de varias hileras de espesor. Están formados por células parenquimáticas exclusivamente, con puntuaciones simples. El parénquima axial se dispone acompañando a los elementos verticales como las fibras y vasos. Las fibras son las células de sostén, a mayor cantidad de estas células, mayor es la dureza de la madera. Son células muertas, de paredes secundarias muy gruesas.22

[editar]Peridermis

La epidermis no acompaña el crecimiento en grosor del tallo secundario, siendo remplazada por la peridermis, tejido formado por el otro meristema secundario llamado felógeno, el que producesúber o corcho hacia fuera, y felodermis hacia el interior. Esta peridermis es gradualmente eliminada junto con las capas más viejas de floema, este conjunto de tejidos muertos es el ritidomaconocido vulgarmente como la corteza en los árboles. Un nuevo felógeno se forma cada cierto tiempo. En algunos árboles como el Quercus suber, del cual se extrae el corcho comercial, el felógeno dura toda la vida de la planta, produciendo súber de forma continua.4
El intercambio gaseoso se lleva a cabo por zonas llamadas lenticelas. Se forman normalmente donde se encontraban los estomas. En esta zona, el felógeno desarrolla un tejido de relleno, formado por células con abundantes espacios intercelulares.23

[editar]Crecimiento secundario anómalo

La anatomía del tallo descripta se denomina crecimiento secundario típico, y ocurre en las dicotiledóneas arbustivas y leñosas y en las gimnospermas. Algunas plantas como las trepadoras, lianas y enredaderas presentan variaciones de esta estructura, conocidas como crecimiento secundario anómalo. Algunos géneros de monocotiledóneas tales como AloeYucca y la familia de las palmeras tienen crecimiento secundario anómalo, el cual difiere del crecimiento secundario típico en que nuevos vasos se forman en el margen del tallo, el xilema y el floema siguen presentándose como haces vasculares ya que no se forma un cilindro de xilema rodeado por uno de floema.4

[editar]Adaptaciones al ambiente

[editar]Adaptaciones al aprovisionamiento de agua


Sección transversal del tallo de una planta acuática (Pontederia cordata). Obsérvese los grandes espacios intercelulares llenos de aire que aseguran la flotabilidad.

Los tallos aplanados, con función asimiladora, suculentos y con sus hojas transformadas en espinas son típicos de muchas cactáceas. Se denominan cladodios y representan una adaptación para evitar la pérdida de agua por transpiración y para acumular agua durante los períodos favorables.

Las estructuras que parecen ser hojas en Ruscus aculeatus son en realidad tallos aplanados que desempeñan la fotosíntesis y se denominan filóclados.
Los tallos de aquellas especies que viven sumergidas en el agua (hidrófitas) presentan una organización especial (hidromorfia) que les permite absorber directamente del agua, el dióxido de carbono y el oxígeno, tanto como las sales nutritivas. De hecho, algunas plantas acuáticas, tales como CeratophyllumUtricularia y Wolffia, carecen de raíces por esa razón. Las paredes celulares de las células epidérmicas de los tallos de estas plantas sólo desarrollan una cutícula muy delgada que apenas opone resistencia a la entrada de los gases, del agua y de las sales en disolución. El empuje que de abajo hacia arriba experimentan todos los objetos sumergidos hace innecesario en los tallos el tejido de sostén. En casi todas las plantas acuáticas, por otro lado, es notable el desarrollo de los espacios intercelulares. Los amplios conductos almacenan aire, lo que por un lado aumenta la flotabilidad y, por el otro, hace posible sobre todo una activa difusión de los gases en el interior de la planta.3
Las espinas son formaciones agudas, aleznadas, a veces ramificadas, provistas de tejido vascular, rígidas por ser ricas en tejidos de sostén. Las espinas pueden tener origen caulinar, es decir que son ramas reducidas a espinas, como sucede en Prunus spinosa y y otras especies como Gleditsia triacanthos. El tejido vascular de la espina es continuación del leño del tallo. Hydrolea spinosa, planta palustre típica de humedales, presenta espinas caulinares que a veces llevan hojas diminutas. En cambio los aguijones carecen de tejido vascular, y por ello son fáciles de arrancar. Los aguijones de Ceiba speciosa, el palo borracho, y de Fagara rhoifolia son emergencias formadas por tejidos corticales del tallo.
En los tallos suculentos de las cactáceas y de ciertas especies del género Euphorbia y de la familia de las asclepiadáceas la reducción de las hojas es extrema y las plantas son áfilas. La función asimiladora de las hojas es realizada por los tallos, cuya transformación se produce por reducción de ramas laterales, hojas reemplazadas por espinas y aumento de corteza para almacenar agua. Algunas cactáceas presentan tallos aplanados llamados cladodios, con aréolas (yemas axilares reducidas) en los nudos y estrechamientos en los puntos de ramificación. El caso extremo es el tallo esférico, con profundos pliegues o costillas que siguen los ortósticos. Estos tallos plegados pueden extenderse o contraerse según el parénquima acuífero esté más o menos repleto de agua. Las ramas que tienen crecimiento limitado, es decir que son braquiblastos, y presentan aspecto de hojas se llaman filóclados (por ejemplo,Ruscus aculeatus).2 11 3

[editar]Adaptaciones a períodos desfavorables para el crecimiento


Esquema del rizoma de Polygonatum verticillatum. I y II señalan el crecimiento de los dos años previos, III señala el crecimiento actual. Los números arábigos (1, 2, 3...) indican el nudo o lugar donde se hallaba cada catáfila u hoja modificada, los espacios entre los números son los entrenudos. K1, k2, indican la posición de las yemas axilares que están inactivas (dormidas).
Las plantas han resuelto de maneras muy diversas el problema de la supervivencia durante épocas adversas, como son los inviernos muy fríos y los veranos excesivamente cálidos y secos. Así, las especies anuales completan su ciclo durante las estaciones favorables y transcurren como semillas las épocas desfavorables para el crecimiento. Las plantas bulbosas, en cambio, han desarrollado órganos subterráneos de reserva que les permiten sobrevivir durante las estaciones desfavorables en estado de reposo y reiniciar el crecimiento cuando las condiciones ambientales vuelven a ser favorables.24 Las adaptaciones y las estrategias de las plantas bulbosas pueden satisfacer exigencias ecológicas muy diversas. Numerosos tulipanes (Tulipa) de origen asiático, por ejemplo, están adaptados a un clima continental extremo, con veranos secos y tórridos, inviernos helados y primaveras con breves aguaceros, período en el cual desarrollan su ciclo completo. Existen, por otra parte, muchas especies de sotobosque, como algunos crocos (Crocus), la escila (Scilla) y el diente de perro (Erythronium) que, gracias a sus reservas alimenticias, crecen muy rápido y cumplen su ciclo a principios de la primavera, antes de que las hojas de los árboles de hallan desarrollado y les quiten la luz del sol.24 Muchas plantas bulbosas habitan comunidades adaptadas a incendios recurrentes durante la estación seca (ejemplo, varias especies de Iridaceae). En esos períodos, las plantas bulbosas se hallan en reposo y de ese modo sobreviven al calor del fuego. Los incendios limpian de vegetación la superficie, eliminando la competencia y, además, aportan nutrientes al suelo a través de las cenizas. Cuando las primeras lluvias caen, los bulbos, cormos y rizomas comienzan a brotar rápidamente, iniciando un nuevo período de crecimiento y desarrollo sostenido por las reservas acumuladas en sus tejidos durante la estación previa. Varias especies del género Cyrtanthus, por ejemplo, son reconocidas por su rápida capacidad de florecer luego de incendios naturales de pastizales, de ahí que varias de estas especies sean conocidas como "lirios de fuego". De hecho, ciertas especies tales como Cyrtanthus contractus, Cyrtanthus ventricosus y Cyrtanthus odorus, solo florecen luego de que se producen los incendios naturales.25 El mayor número de especies de plantas bulbosas se encuentran en regiones del mundo con un clima mediterráneo, esto es, donde los inviernos son fríos y húmedos y los veranos son secos y cálidos, con una primavera corta. Las reservas acumuladas en estas plantas les permiten crecer rápidamente en la primavera, antes de que las hierbas anuales tengan tiempo de hacerlo. Cinco áreas en el mundo tienen este tipo de clima: la región del Mediterráneo, extendiéndose hacia el este hasta Asia CentralCalifornia; la región central de Chile, el extremo sur de Sudáfrica y el oeste y sur de Australia.
En los climas tropicales, donde existe una alternancia de estaciones secas y húmedas, las plantas bulbosas son también muy comunes. Finalmente, algunas especies bulbosas también proceden de regiones con lluvias estivales e inviernos secos. Una región con este tipo de clima y que es particularmente rica en especies bulbosas es la de las montañas Drakensberg en el noreste de la provincia de El Cabo en Sudáfrica.26
Las hierbas perennes o las plantas bianuales pierden los brotes foliosos aéreos para pasar la estación desfavorable; tienen yemas epígeas situadas a ras del suelo o yemas subterráneas. Para que estas yemas broten necesitan reservas elaboradas en el período favorable anterior, las cuales se almacenan en órganos como:
  • Rizoma: son tallos subterráneos, generalmente de crecimiento horizontal, que pueden ramificarse simpodial o monopodialmente con menos frecuencia). Crecen indefinidamente, en el curso de los años mueren las partes más viejas pero cada año producen nuevos brotes, pueden cubrir grandes áreas. Sus ramas engrosadas suelen presentar entrenudos cortos, tienen catáfilos incoloros y membranáceas, raíces adventicias y yemas. Las plantas con rizomas son perennes, pierden sus partes aéreas en climas fríos conservando tan sólo el órgano subterráneo que almacena los nutrientes para la temporada siguiente. Frecuentemente las espermatófitas presentan rizomas simpodiales, en los que cada porción corresponde al desarrollo de yemas axilares sucesivas. La yema terminal de cada porción produce el brote epígeo, como por ejemplo en Sanseviera thyrsiflora y Paspalum nicorae. En los rizomas monopodiales, en cambio, la yema terminal continúa el crecimiento indefinido del rizoma, mientras las yemas axilares originan los brotes epígeos. Este tipo de rizomas es característico de muchas especies invasivas o malezas, tales como Sorghum halepense. Los rizomas se pueden dividir en trozos que contienen una yema al menos cada uno y plantar por separado. Es un sistema de reproducción vegetativa común a muchas plantas, como AchimenesCannaZantedeschia, lirio y jengibre (Zingiber officinale).27 2 11 3

Joven tubérculo de papa (Solanum tuberosum) que se desarrolla en el extremo de un rizoma.

Cormos de gladiolo (Gladiolus).

Bulbos de cebolla (Allium cepa).
  • Tubérculo caulinar: son tallos con crecimiento limitado, epígeos o subterráneos. En el primer caso pueden originarse por fuerte engrosamiento primario o secundario del hipocótilo, o de uno o varios entrenudos. El colinaboBrassica oleracea var. gongyloides, es un típico tubérculo caulinar epígeo. Otras especies con tubérculos derivados del hipocótilo son la violeta de los Alpes (Cyclamen sp.), el rábano (Raphanus sativus) y la remolacha roja (Beta vulgaris var. conditiva). La papa, Solanum tuberosum, presenta un tubérculo caulinar subterráneo o hipógeo formado a partir de los entrenudos apicales de rizomas. Esos rizomas presentan una zona meristemática sub-apical, de donde se originan los tubérculos mediante un engrosamiento radial, producto del alargamiento de las células parenquimáticas y la pérdida de la polaridad de las mismas. Durante la formación del tubérculo, el crecimiento longitudinal del estolón se detiene y las células parenquimáticas de la corteza, de la médula y de regiones perimedulares sufren divisiones y alargamiento. En tubérculos maduros, existen pocos elementos conductores y no hay un cámbium vascular continuo. Los tubérculos están cubiertos por una exodermis que aparece al romperse la epidermis que va engrosándose con el tiempo. Sobre su superficie existen "ojos", hundimientos para resguardar las yemas vegetativas que originan los tallos, que están dispuestos forma helicoidal. Además, hay orificios que permiten la respiración, llamados lenticelas. Las lenticelas son circulares y el número de las mismas varía por unidad de superficie, tamaño del tubérculo y condiciones ambientales.28 Los tubérculos, en definitiva, están constituidos externamente por la peridermis, las lenticelas, los nudos, las yemas y, eventualmente, por un fragmento o una cicatriz proveniente de la unión con el rizoma del cual se originaron; internamente se distingue la corteza, el parénquima vascular de reserva, el anillo vascular y el tejido medular.29
  • Cormo: es un tallo engrosado subterráneo, de base hinchada y crecimiento vertical que contiene nudos y abultamientos de los que salen yemas. Esta recubierto por capas de hojas secas, a modo de túnicas superpuestas llamadas túnicas, las que varían mucho entre especies. Así, hay especies con túnicas papiráceas, fibrosas o con la textura de la cáscara de un huevo. Además, las especies con túnicas fibrosas pueden tener las fibras de las túnicas dispuestas en forma paralela, o bien, reticulada. En la parte inferior del cormo se producen pequeños cormos nuevos que servirán para la reproducción de nuevas plantas. Al igual que los bulbos y los rizomas, estos órganos son acumuladores de sustancias nutritivas constituidos por células parenquimáticas. Las plantas que presentan cormos son plantas perennes que pierden sus partes aéreas en climas fríos durante la época invernal, conservando únicamente su parte subterránea. Esta capacidad para almacenar nutrientes constituye un método de supervivencia en caso de condiciones adversas, como una prolongada sequía o una temporada estival demasiado calurosa.27
  • Bulbo: la función reservante es ejercida principalmente por hojas engrosadas y carnosas. El tallo generalmente es subterráneo, muy intensamente acortado, con hojas engrosadas y carnosas. En la cebolla, Allium cepa, planta bienal, cuando la semilla germina se forma un tallo corto llamado platillo que lleva las hojas cilíndricas dispuestas en forma concéntrica. Las vainas foliares se ensanchan, llenándose de sustancias de reserva. Las más externas no engruesan, se secan constituyendo túnicas de protección. En invierno los limbos foliares mueren y queda el bulbo bajo tierra. Al año siguiente la yema apical desarrolla el tallo florífero, utilizando las reservan acumuladas, el bulbo se consume totalmente y no es reemplazado, es decir que la planta muere. En el ajo, Allium sativum, todas las túnicas son delgadas y papiráceas. En la axila de cada túnica se desarrollan dos a cinco yemas colaterales que formarán bulbillos, los "dientes de ajo", cada uno con una sola túnica carnosa alrededor de la yema terminal. Cada bulbillo puesto en tierra dará un brote epígeo, y las yemas ubicadas en la axila de sus túnicas protectoras formarán nuevamente bulbillos. En Tulipalas hojas engrosadas son catáfilos, que nunca presentan partes aéreas, los más externos de protección y los más internos reservantes; se observa una yema terminal y una yema axilar en la axila del catáfilo más interno. En primavera la yema terminal originará el tallo florífero, utilizando las reservas del bulbo. Las hojas persisten después de la floración y en verano las reservas se acumulan en los catáfilos de la yema axilar, formando un nuevo bulbo (bulbo simpodial) que repetirá el proceso. Una vez que se forma el nuevo bulbo el tallo aéreo y el disco viejo se secan.27

[editar]Adaptaciones al aprovechamiento de la luz


Zarcillos caulinares en la vid (Vitis vinifera).

Espinas caulinares en Gleditsia triacanthos.
Las trepadoras elevan en poco tiempo sus hojas por encima de la sombra de los árboles trepando por encima de otros vegetales, o también sobre rocas o muros. Existen dos tipos básicos de plantas trepadoras de acuerdo a sus tallos:2 11 3 27
  • Lianas o bejucos: son trepadoras leñosas, de tallos gruesos, típicas de bosques y selvas maduros. Muchas lianas presentan crecimiento secundario anómalo. Una leguminosaBauhinia macrostachya, conocida como "escalera de mono", tiene el tallo acintado, más delgado en el centro que en los márgenes, resistente a la torsión y a la flexión. En las bignoniáceas la disposición particular de los tejidos vasculares del tallo le otorga flexibilidad. En las sapindáceas, es frecuente el tallo fasciculado, resultado una estructura retorcida parecida a sogas.
  • Zarcillos, órganos filiformes o ramificados que tienen la capacidad de rodear los soportes y fijarse a ellos por su intensa excitabilidad al contacto. Su origen es caulinar en Vitis viniferaPassiflora, y foliar en las leguminosas y en las bignoniáceas. En Parthenocissus los zarcillos caulinares son ramificados y terminan en ventosas.
  • Aguijones y espinas. Los primeros se presentan en especies trepadoras de RosaBougainvillea spectabilis, la "Santa Rita" y varias especies deMimosa presentan espinas caulinares. Desmoncus, es otro ejemplo y representa la única palmera neotropical trepadora con tallos espinosos.

[editar]Importancia económica


Los tallos del espárrago son comestibles.

La canela proviene de la corteza del tronco de un árbol.
Existen miles de especies cuyos tallos presentan importancia económica. Muchos tallos proveen alimento para los seres humanos, tales como la papa (Solanum tuberosum) o el taro (Colocasia esculenta). La caña de azúcar (Saccharum) se utiliza en la industria no solo como fuente de sacarosa sino para producir alcohol. Varios vegetales de uso culinario son tallos, tales como el espárrago, los brotes de bambú, los cladodios jóvenes de Opuntiapara preparar nopalitos, el colirábano (Brassica oleracea gongyloides), el corazón o cogollo de los palmitos (Chamaerops humilis). La canela es unaespecia que se extrae de la corteza del tronco de un árbol (Cinnamomum verum). La goma arábiga es un aditivo alimentario que se obtiene de los troncos de Acacia senegal. El chicle, ingrediente principal de la goma de mascar se obtiene de los troncos de Manilkara zapota. A partir de los tallos de muchas especies se obtienen también medicinas, tales como la quinina a partir de la corteza del quino (Cinchona ledgeriana), el alcanfor a partir de la madera destilada de Cinnamomum camphora, el relajante muscular llamado curare extraído de la corteza de variadas especies de enredaderas tropicales, entre ellas, Strychnos toxifera2 3 y el ácido salicílico de la corteza de varias especies de sauce (Salix).30
La madera se emplea de miles de maneras, por ejemplo, en la construcción de edificiosmueblesbarcosaeroplanos, piezas de automóviles, instrumentos musicales, equipos deportivos, durmientes de ferrocarril, postes de electricidad, postes para cercas, postes, palillos, fósforos,contrachapadoataúdestoneles, juguetes, mangos de herramientas, marcos de cuadros, chapas de madera, carbón vegetal y leña. La pasta de celulosa se utiliza ampliamente para fabricar papelcartón, esponjas de celulosa, papel celofán y algunos plásticos y textiles importantes, tales como el acetato de celulosa y el rayón. Los árboles de crecimiento lento proveen, en general, maderas duras, de mejor calidad, que se emplean usualmente en la industria del mueble. Los árboles de crecimiento rápido dan maderas blandas que se usan principalmente para la fabricación de papel. Entre los árboles de maderas nobles se encuentran la caoba, el ébano, la teca, y el palo rosa empleados para hacer muebles de gran calidad, y entre los de madera blanda, las coníferas son muy comunes, como el alerce, el pino, el abeto y otros como el álamo, la haya, el abedul y el roble, de aplicación en la industria de la construcción. Los tallos de bambú también tienen cientos de usos, incluyendo la fabricación de papel, muebles, embarcaciones, instrumentos musicales, cañas de pescar, conductos de agua y andamios. Los troncos de las palmeras y de los helechos son a menudo utilizados para la construcción.2 3
Otros productos de uso industrial también se extraen de tallos. Los taninos utilizado para el curtido del cuero se obtienen de la madera de ciertos árboles, como el quebracho (Schinopsis balansae). El corcho se obtiene de la corteza del alcornoque (Quercus suber). El látex se obtiene de los troncos de Hevea brasiliensis. El ratán, utilizado para la confección de muebles y cestas, está hecho de los tallos de palmas tropicales. Las fibras para la industria textil se obtienen de los tallos de muchas especies, entre las que se incluyen el lino, el cáñamo, el yute y el ramio. Los primeros documentos escritos fueron obtenidos por los antiguos egipcios a partir de tallos de papiro.2 3
Muchas plantas ornamentales se cultivan por sus atractivos troncos, como por ejemplo Betula papyrifera por su corteza blanca y Acer griseum por sus troncos de color rojo, como así también los tallos y ramas retorcidas de algunas especies de sauces (Salix matsudana y Salix erythroflexuosa).31

[editar]



 ¿ Qué son las hojas?

La hoja es una de las partes más importantes de los vegetales puesto que es la parte de la planta que está encargada de realizar la fotosíntesis , así como la respiración y la transpiración vegetal. Una hoja consta del limbo que es la parte ancha de la hoja. En el limbo se encuentran una serie de canales llamados nervios por donde circula la savia. La parte superior de la hoja la llamamos haz y a la parte inferior envés. El borde o extremo de la hoja se llama margen.
El limbo se une a la rama a través de una especie de rabito que se llama pecíolo, aunque hay algunas hojas que carecen de pecíolo
Existen diferentes formas de hojas según la forma de los nervios, según si tienen o no pecíolo, según la forma del limbo, según como es el margen, etc. Por ejemplo, llamamos hojas simples las que tienen un limbo sin partir o , aunque este limbo esté partido, las divisiones no llegan hasta el nervio principal. Son hojas compuestas aquellas en las que el limbo está dividido en fragmentos que llegan al nervio principal. Las hojas dentadas tienen el margen en forma de dientes mientras que las hojas enteras tienen el margen liso. 



Tipos de hojas según su momento de aparición durante la vida de la planta

Desde que la planta germina hasta que produce nuevamente semillas se van sucediendo distintos tipos de hojas, las cuales se describen a continuación:9 11 10

Una plántula de Pinus halepensis con ocho cotiledones.

Primeros estadios de desarrollo enRicinus communis L. (dicotiledóneas)
  • Cotiledones u hojas embrionales: son las primeras hojas que se observan luego de la germinación de la semilla. Generalmente su número es característico para cada grupo de plantas. Así, las plantas monocotiledóneas presentan un solo cotiledón, las dicotiledóneas tienen dos y lasgimnospermas desde dos a muchos. Los cotiledones pueden ser epígeos cuando se expanden durante la germinación de la semilla, rasgan las cubiertas de la semilla, crecen por encima de la superficie del 

    Los dos cotiledones de la plántula deCarpinus betulus, una dicotiledónea.
    terreno y -en muchos casos- comienzan a realizar fotosíntesis. Los cotiledones hipógeos no se expanden, quedan debajo de la superficie y no realizan fotosíntesis. Este último caso es el típico en aquellas especies, tales como nueces y bellotas, en las que los cotiledones actúan básicamente como órganos de reserva de nutrientes.12 13 En el caso de las plantas dicotiledóneas en las que los cotiledones son fotosintéticos, éstos son funcionalmente similares a las hojas. Sin embargo, las verdaderas hojas y los cotiledones presentan dieferencias tanto estructurales como de desarrollo. Los cotiledones se forman durante la embriogénesis, junto con los meristemas de la raíz y del tallo y, por lo tanto, se hallan presentes en la semilla antes de la germinación. Las hojas verdaderas, en cambio, se forman después de la germinación y a partir del meristema apical del tallo, que es responsable de la generación posterior de las partes aéreas de la planta. En general los cotiledones tienen vida breve y su forma es diferente a la de los nomófilos. En ciertos casos excepcionales, como en algunasgesneriáceas tropicales como Monophyllaea y Streptocarpus, los cotiledones son las únicas hojas que se forman. Uno de ellos se agranda considerablemente y constituye una hoja de larga duración; en su axila se desarrolla la inflorescencia.9
  • Hojas primordiales o catáfilos: son las primeras hojas que nacen por encima de los cotiledones de la planta joven. En especies cuyas hojas normales son compuestas, tales como la soja y el fresno, las hojas primordiales son simples o con menor número de folíolos. En otras especies, tales como la arveja y el girasol, las hojas primordiales presentan la misma forma que los nomófilos pero menor tamaño.
  • Hojas vegetativas o nomófilos: aparecen después de las hojas primordiales y son las que se forman durante toda la vida de la planta. Son morfológicamente más complejas y son las hojas características de cada especie.
  • Profilos: son las primeras hojas sobre un eje lateral. Tienen una posición característica, lateral en dicotiledóneas y dorsal y soldados entre sí en monocotiledóneas. Sobre el eje lateral después de los profilos pueden desarrollarse nomófilos u otros tipos de hojas como brácteas o antófilos.
  • Hojas preflorales: cuando las plantas pasan del estado vegetativo al estado floral, el cambio se halla usualmente precedido por la modificación de la forma de las hojas. En general, el tamaño del limbo se reduce, los pecíolos se acortan hasta que las hojas 

    Las coloridas hojas preflorales obrácteas de Bougainvillea spectabilis se confunden con sus flores, pequeñas y de color blanco en el centro de la imagen.

    Detalle de un pétalo de clavel (Dianthus). Los pétalos, al igual que las restantes piezas de la flor, son hojas modificadas para cumplir funciones específicas distintas a lafotosíntesis.
    se vuelven sésiles y la coloración de las mismas suele ser diferente, como es el caso de Euphorbia pulcherrima y de Bougainvillea spectabilis). Cuando las hojas preflorales se encuentran sobre el eje principal se llaman brácteas o hipsófilos y cuando se encuentran sobre un eje lateral reciben el nombre de bractéolas. Estos son órganos foliáceos que rodean a las flores y, por ende, son diferentes tanto de los nomófilos como de las piezas del perianto. A pesar de ser generalmente verdes, su función principal no es la fotosíntesis, sino la protección de las flores o de las inflorescencias. Su tamaño es muy variable. En ciertos casos, como en el tilo (Tilia cordata) o en las espádices, son más grandes que la inflorescencia. En otros casos, como en la familia de lascompuestas, son muy pequeñas; por ejemplo, las brácteas que forman el involucro alrededor de la base del capítulo en el diente de león ( Taraxacum officinale). Generalmente son verdes, pero es frecuente que presenten pigmentos complementarios que les confieren otro color.
  • Antófilos u hojas florales: son las hojas modificadas que constituyen los órganos florales. Los denominados antófilos estériles son los que forman elperianto o el perigonio, es decir, los sépalos y los pétalos. Los pétalos son casi siempre las partes más visibles de la flor, generalmente son de vivos colores, con función atractiva, organizados en una envoltura de las restantes piezas de la flor llamada corola. A veces son portadores de nectarios o glándulas productoras de néctar. Los sépalos son más semejantes a hojas normales que los anteriores. Suelen ser verdes y se sitúan debajo de los pétalos, cerrando la flor desde abajo. Cuando la flor está brotando, ellos encierran y protegen las partes internas más delicadas. Tépalo es el término utilizado cuando todos los antófilos del perianto son similares en forma y color y, por ende, no están claramente diferenciados los sépalos de los pétalos, como habitualmente ocurre en las plantas monocotiledóneas. Los antófilos fértiles, por otro lado, son las hojas muy modificadas sobre las que se desarrollan los órganos productores de las células sexuales. Se distinguen los estambres y los carpelos.

[editar]Morfología foliar

Un nomófilo consta usualmente de una lámina plana y expandida, de un corto tallito llamado pecíolo que une la lámina al tallo y, en su base, de un par de apéndices similares a hojas —llamados estípulas—. La presencia o ausencia de cada uno de estos elementos y la extrema diversidad de formas de cada uno de ellos ha generado un rico vocabulario para categorizar la multiplidad de tipos de hojas que presentan las plantas vasculares y cuya descripción se denomina morfología foliar.1

[editar]Lámina o limbo

La parte plana, delgada y expandida de la hoja, que contiene la mayor parte de los cloroplastos, se denomina lámina o limbo foliar. Presenta dos caras: la adaxial, superior, ventral, haz o epifilo dirigida hacia el ápice del vástago, y la cara abaxial, inferior, dorsal, envés o hipofilo dirigida hacia la base deltallo. Cuando ambas caras son del mismo color, la hoja se llama concolora; cuando son de distinto color, generalmente la adaxial es de color verde más oscuro, la hoja se llama discolora.5

[editar]Pecíolo

Muchas hojas tienen un tallito proximal, llamado pecíolo en el caso de los nomófilos de las espermatófitas o estípite en el caso de los frondes de los helechos. Ese tallito usualmente es estrecho, puede ser cilíndrico o deprimido en la cara superior, o aplanado y ancho. En muchas ocasiones las hojas no tienen pecíolo y el limbo se une directamente al tallo. En esos casos la hoja se llama sésil o sentada. Cuando hay dos hojas sésiles insertas en cada nudo, a veces se unen entre sí rodeando completamente al tallo como es el caso del clavel (Dianthus).14
Muchas especies presentan engrosamientos con aspecto de articulaciones, denominados pulvinos, los que están situados en la base o en el ápice del pecíolo, o pulvínulos si se encuentran en la base de los peciólulos de las hojas compuestas. Ambos tipos de engrosamientos son hinchados, presentan una superficie arrugada y, funcionalmente, se hallan relacionados con los movimientos reversibles de las hojas que ocurren como respuesta a estímulos: las nastias. Los pulvínulos de ciertas especies de del género Mimosa mueven las hojas en respuesta a los estímulos táctiles.14
Hay estructuras similares a pecíolos pero que, en realidad, no lo son. Por ejemplo, una hoja o parte de la hoja, normalmente en la base, que encierra parcial o totalmente al tallo por encima del nudo es una vaina foliar, como ocurre en las familias de las gramíneas y en muchas apiáceas. Un pseudopecíolo, por otro lado, es una estructura similar a un pecíolo que surge entre una vaina de la hoja y la lámina, como se encuentra en varias monocotiledóneas, tales como los bananos y los bambúes.14

[editar]Estípulas


Estípulas en la hoja de Rosa (el tallo ha sido removido).

Estípulas en la hoja de Rosa (el tallo ha sido removido).
Muchas hojas tienen estípulas, un par de apéndices similares a hojas que se ubican a ambos lados de la base de la hoja. Las estípulas pueden adquirir diversas formas, desde órganos foliáceos, espinas, glándulas, pelos o hasta escamas. Si las estípulas están presentes, las hojas se dicen estipuladas. Una estructura especializada, escariosa, que se halla por encima de los nudos en algunos miembros de la familia de las poligonáceas, se interpreta como una versión modificada de una estípula y se denomina ócrea. Las estructuras que remedan estípulas en las bases de los folíolos reciben el nombre de estipelas (por ejemplo en Thalictrum o en algunas leguminosas). Las estípulas y estipelas pueden, en algunos casos, funcionar como protección del desarrollo de los primordios foliares.15 16 Las estípulas pueden ser libres o laterales, cuando no se adhieren al pecíolo y quedan unidas sólo al talloadnataspeciolaresvaginales si se sueldan al pecíolo en un trecho más o menos largo; interpeciolares o caulinares cuando las estípulas de hojas opuestas se sueldan en su punto de contacto; intrapeciolares o axilares cuando las estípulas de la misma hoja se sueldan por encima del pecíolo; opuestas cuando las estípulas de la misma hoja se sueldan dando la vuelta por el lado opuesto al pecíolo; ambiguas cuando se sueldan al tallo y al pecíolo.15 5

[editar]Tipos de hojas de acuerdo a su morfología


La gran diversidad de tipos de hojas que presentan las espermatófitas puede clasificarse atendiendo a la forma dellimbo, a las características de lanervadura principal (1) o de las nervaduras secundarias (2), al aspecto del borde (3), de la base (4) y del ápice (5) del limbo.

Esquemas representativos de los tipos de hojas según su forma, margen o borde y nerviación.
Las hojas son extraordinariamente variadas en cuanto a su forma, la que suele ser característica de cadaespecie, aunque con grandes variaciones entre individuos e incluso dentro del mismo individuo. Se puede distinguir, en primer lugar, entre las hojas que presentan pecíolo -hojas pecioladas- de las que no lo poseen -hojas sentadas o sésiles-. En este último caso el limbo suele tener una base de contacto más amplia con el tallo que sostiene a la hoja -hojas abrazadoras- pero si lo rodea hasta el punto de que por detrás de la rama se sueldan los dos lóbulos de la hoja, la misma se llama perfoliada. Las hojas cuyo limbo se prolonga hacia abajo formando un ala a lo largo del pecíolo y con el entrenudo se denominan decurrentes.16 11
En atención a la forma del limbo, se aplican las siguientes denominaciones a las hojas: redondas, ovaladas, elípticas, alargadas, lanceoladas, espatuladas, cuneiformes, lineales. Como formas especiales, se pueden citar las hojas peltadas, acorazonadas, arriñonadas y aflechadas.16 11
El borde del limbo rara vez es completamente liso, como ocurre en las denominadas hojas enteras, siendo con más frecuencia aserrado, dentado, festoneado o lobulado. Si las incisiones del borde penetran en el limbo más profundamente que en los casos citados se tienen las hojas lobuladas, hendidas, partidas y cortadas, según que la incisión no llegue a hasta un punto equidistante del borde y de la nervadura media, que profundice hasta ese punto, que penetre todavía más profundamente o que alcance a la nervadura media o a la base de la hoja, respectivamente. Además de las hojas sencillas que poseen su limbo indiviso -hojas simples- también son frecuentes las hojas que presentan su limbo totalmente dividido de modo tal que cada parte o folíolo reproduce la forma de una hoja sencilla, denominadas hojas compuestas. Las hojas compuestas pueden ser trifoliadas, cuando está formada por tres folíolos y palmadas o pinnadas cuando son más de tres. A su vez, estas últimas pueden ser «imparipinnada», cuando presenta un folíolo terminal, o «paripinnada», cuando no lo presenta. Si los folíolos que integran la hoja pinnada son a su vez compuestos, la hoja se dice bipinnada.16 11

Hoja de nisperero ampliada, que ilustra la apariencia general de la hoja y la estructura de la venación.
Las hojas se hallan recorridas por un sistema de líneas salientes, distribuidas en general de un modo característico para cada especie, denominadas nervios o nervaduras. Los nervios actúan mecánicamente en el sentido de dar consistencia al limbo, casi siempre blando, sirviendo además para la conducción de materiales nutritivos, especialmente de agua. Los nervios más robustos sobresalen a modo de costillas, particularmente en el envés, estando unidos entre sí por una especie de red constituida por las nervaduras más finas. La nerviación puede adoptar tres disposiciones según las cuales pueden clasificarse a las hojas. Así, en las hojas paralelinervadas, los nervios son más o menos paralelos entre sí y con el borde de la hoja. Este tipo de hoja es la típica de la mayoría de las especies de monocotiledóneas, si bien también se halla en algunas dicotiledóneas. En las hojas retinervadas o peninervias, el nervio principal sigue la línea media de la hoja y de él parten nervios menos gruesos hacia ambos márgenes del limbo, los que -a su vez- pueden también ramificarse. Las hojas palminervias, finalmente, son aquellas en las que varias nervaduras se separan de un punto común situado en la base del limbo e irradian hacia distintos puntos de los márgenes foliares. Estos dos últimos tipos de hojas son las típicas de las plantas dicotiledóneas.16 11

[editar]Prefoliación o vernación

La disposición del limbo de las hojas jóvenes que se hallan dentro de las yemas presenta una disposición característica de cada especie, llamadaprefoliación o vernación. Se distinguen varios tipos:17 10
  • plana, limbo extendido;
  • conduplicada, limbo plegado en dos a lo largo de la vena media, como por ejemplo, en Calibrachoa thymifolia.;
  • replegada, limbo plegado como un abanico, como en Vitis.;
  • convoluta, limbo enrollado paralelamente a la vena media, como en Lactuca;
  • involuta, limbo con sus márgenes arrollados hacia el haz, como en el caso del peral;
  • revoluta, limbo con los márgenes arrollados hacia el envés, como en los sauces;
  • circinada, las hojas se enrollan sobre sí mismas desde el ápice hacia la base. Lo mismo ocurre en las pinas, que lo hacen desde el extremo hacia su inserción sobre el raquis. Esta prefoliación es característica de las pteridófitas, y se presenta raramente en espermatófitas, por ejemplo en Utricularia foliosa.

[editar]Filotaxis


Filotaxis a) alternada b) opuestas (decusadas) c) dísticas y d) verticilidas.
Se denomina filotaxis a la disposición de las hojas sobre el tallo. Tal disposición se halla estrechamente asociada a la estructura primaria del tallo. De hecho, el número de haces vasculares del tallo queda determinado por la filotaxis: cuanto más densa es la misma, mayor será el número de haces vasculares. El análisis de la filotaxis puede realizarse de dos modos: estudiando el arreglo de las hojas a lo largo del tallo maduro o bien, estudiando la yema en un corte transversal, donde se puede observar la situación respectiva de varias hojas jóvenes.18

[editar]Diversidad foliar en las plantas vasculares

Las plantas vasculares o traqueófitas son un grupo monofilético (que comprende a todos los descendientes de un ancestro común) dentro de lasembriófitas. Dentro de las traqueófitas hay dos linajes principales, Lycophyta y Euphyllophyta, diferenciadas principalmente por la forma de construcción de sus hojas. Las eufilofitas a su vez comprenden dos grandes linajes, Monilophyta (helechos, equisetáceas y psilotáceas) y Spermatophyta, que se diferencian entre sí porque el primero tiene gametofitos de vida libre y el segundo los tiene encerrados en el saco embrionario y el grano de polen. A su vez las espermatofitas están formadas por dos grandes grupos monofiléticos vivientes, las gimnospermas y las angiospermas, que se diferencian entre sí porque el primer linaje tiene las semillas desnudas sobre la hoja fértil, mientras que el segundo tiene las semillas encerradas dentro de las paredes de la hoja fértil o carpelo.19

[editar]Las hojas de las pteridófitas


Macrofilos de Pteridium aquilinum, los que comúnmente se denominan frondes.
Las hojas que se originan en el tallo de las pteridófitas pueden estar o no vascularizadas. En las licofitas no están vascularizadas o están vascularizadas pero no deja trazo foliar en el cilindro vascular, debido a eso son hojas que no pueden crecer mucho y se denominan «microfilos», las cuales son características de las pteridofitas más primitivas. Las hojas vascularizadas, los «megafilos», son característicos de la división más moderna Monilophyta, coincidiendo su aparición con la de una sifonostela en el cilindro del tallo, son más desarrollados, nervados, y al alejarse del tallo dejan una traza foliar y una laguna foliar en el cilindro vascular, que se observan en el corte transversal del tallo. Sólo hay dos clados de monilofitas que no tienen megafilos por haberlos perdido en forma secundaria: Equisetum, que tiene las hojas reducidas, y Psilotaceae, que tiene algunas especies con las hojas muy reducidas ("enaciones") y algunas en las que no se encuentran hojas. Para diferenciarlos de los microfilos de las licofitas que tienen un origen diferente, a las hojas pequeñas de las equisetáceas y de las psilotáceas se las denomina «eufilos reducidos».20
Microfilos
Son hojas reducidas, enteras, desprovistas de pecíolo, que no presentan haces vasculares o su venación se halla reducida a una sola vena que en algunas especies no supera la base del microfilo. Los génerosSelaginellaLycopodium e Isoetes, por ejemplo, presentan este tipo de hoja.2
Megafilos
Los megafilos de las pteridofitas se denominan frondes. Son hojas de gran tamaño, frecuentemente compuestas, con venación muy desarrollada. El crecimiento de los megáfilos se debe a la actividad de unmeristema apical persistente, cuya actividad —contrariamente a lo que ocurre en las espermatófitas— se prolonga durante mucho tiempo después que la hoja se ha desplegado. Las frondes simples presentan una lámina alargada, entera —como por ejemplo en Ophioglossum— aunque puede ser pinnatífida o pinnatisecta. En las frondes divididas la lámina puede ser pinnada con raquis simple —como en Polypodium vulgare— o bi- o tripinnada con raquis primario y ráquises secundarios o terciarios, como enPolystichum filix-mas. La venación más frecuente de las frondes es la venación dicotómica abierta, aunque puede ser reticulada, similar a la de las espermatófitas, como es el caso deOphioglossum.2

[editar]Las hojas de las gimnospermas


Las hojas de las coníferas son aciculares. En la imagen, hojas de Picea.
Hay una forma foliar típica de gimnospermas, la hoja acicular, presente en Abies, Larix y Picea. Cada hoja acicular tiene dos partes, la lámina que es una aguja verde, recorrida por una sola vena y terminada en una punta aguda, y la base concrescente con el eje al que envuelven constituyendo el denominado cojinete foliar. Sobre cada una de las caras de la lámina hay dos líneas longitudinales que indican la ubicación de los estomas. EnSequoia las hojas presentan un ligero aplastamiento dorsiventral. El género Pinus tiene un follaje particular, pues presenta dos clases de hojas: las ramas largas presentan solamente hojas reducidas , aplicadas contra el tallo. En la axila de estas escamas se insertan ramas cortas, que llevan en su base algunas escamas y terminan en 1-5 hojas aciculares.
En las familias de las taxodiáceascupresáceas y podocarpáceas las hojas presentan forma de escama y tienen un solo nervio, mientras en algunas especies pertenecientes a la familia de las araucariáceas las hojas son anchamente ovadas y con varias venas. En las ginkgoáceas la hoja tiene forma de abanico, con el limbo expandido y venación dicotómica abierta. En el género Cycas las hojas son pinnaticompuestas. En los cipreses y en Thujalas hojas son reducidas y concrescentes, parcialmente soldadas al tallo. Finalmente, en Gnetum las hojas son similares a las de las dicotiledóneas.3

[editar]Las hojas de las monocotiledóneas


Las hojas de las monocotiledóneas son acintadas y paralelinervadas. En la imagen se observan las hojas deNeomarica longifolia.
Las hojas de las monocotiledóneas presentan una diversidad morfológica casi tan amplia como las de dicotiledóneas. Sin embargo, la mayoría de las hojas tienen un aspecto común, característico. Son generalmente enteras, con venación paralela, y la vaina está siempre bien desarrollada.4
Un primer tipo, ejemplificado con Zea maysTulipa y Convallaria, presenta limbo entero, alargado, con venación paralela, y se fija al tallo por medio de una vaina que lo abraza más o menos completamente. En la unión de lámina y vaina puede haber un apéndice laminar, denominado lígula, en posición vertical. La lámina presenta dos caras bien definidas, homólogas de las caras del limbo de las hojas de las dicotiledóneas. El haz mediano puede ser más grande y estar asociado a una costilla prominente.4
Otro tipo de hoja de monocotiledónea se presenta en las aráceas, en las que existe un pecíolo entre la vaina y la lámina. En el camalote el pecíolo está inflado y cada hoja presenta una única estípula, membranácea, situada entre la hoja y el tallo. En Potamogeton las hojas presentan un par de estípulas, una a cada lado, que pueden estar parcialmente soldadas a la hoja. Las hojas de las marantáceas presentan pulvinos entre el pecíolo y la lámina, que les permiten cambiar la posición de la lámina foliar de horizontal (diurna) a vertical (nocturna).
En las iridáceas se presenta un tercer tipo de hoja: hojas ensiformes o equitantes. Las hojas presentan una vaina que lleva sobre su cara dorsal el limbo, dispuesto en un plano perpendicular a la superficie del tallo. Las primeras hojas presentan solamente vaina y las subsiguientes poseen cada vez más desarrollado su limbo. El limbo es aplanado, pero ambas caras son verticales. En otros casos la porción basal de la hoja es envainadora, y la porción apical forma el limbo, sin haber una diferencia morfológica entre ambas porciones, como ocurre en Iris. Una organización del mismo tipo se observa en las hojas de la cebolla y Juncus microcephalus, pero con vaina cilíndrica, totalmente cerrada y lámina cilíndrica cerrada en el ápice. Las primeras hojas de la cebolla son como las de Iris, casi sin lámina, debido a que se halla reducida a una simple masa de clorénquima.4
En la familia de las palmeras puede haber hojas sectadas. La venación puede ser pinnada como en Acrocomia totai (mbocayá), Arecastrum romanzoffianum (pindó) y Butia yatay, (yataí); o palmada como en Copernicia alba (carandá), Trithrinax campestris (caranda-í). En Caryota la hoja es doblemente sectada.4
En Canna (achira) y Musa (bananero) las hojas son pinnati-paralelinervadas. La línea media de la hoja está ocupada por un conjunto de venas paralelas, muy juntas entre sí, y las venas periféricas se van desviando en ángulo recto, a lo largo de la lámina, recorriéndola como venas secundarias paralelas, independientes. La hoja tiende a desgarrarse debido a la carencia de refuerzos marginales.4

[editar]Las hojas de las dicotiledóneas


Las hojas de las dicotiledóneaspueden adoptar distintas formas, si bien usualmente son retinervadas. En la imagen, limbo foliar del roble (Quercus robur).
Las dicotiledóneas usualmente presentan hojas con limbo foliar, pueden ser pecioladas o sésiles y la base foliar puede ser estipulada o no. En este grupo de plantas puede haber hojas simples o compuestas. En el primer caso la hoja puede ser entera —como en el caso de Citrus o Ligustrum—, hendida o lobada —Pelargonium— , partida —Quercus robur— o sectada — DahliaPetroselinum—. En el caso de presentar hoja compuesta, la lámina foliar está dividida en varias subunidades llamadas folíolos, los cuales se hallan articulados sobre el raquis de la hoja o sobre las divisiones del mismo. Cada folíolo a su vez, puede tener peciólulos o ser sésiles. Cuando hay más de tres folíolos y según la disposición que adopten los mismos, la hoja puede ser pinnadacuando las subunidades o pinnas se hallan dispuestas a lo largo de un eje o raquis. En este caso las hojas pueden ser imparipinnada (Fraxinus) oparipinnada según se presente o no un folíolo terminal, respectivamente. Según el grado de división la lámina puede ser: bipinnada, tripinnada, cuadripinnada. En dichos casos hay raquis secundarios, terciarios, etc, y las porciones de lámina se llaman pínulas. Cuando las subunidades o folíolos se encuentran insertos en el extremo del raquis las hojas se llaman palmaticompuestas, el lapacho y el palo borracho son dos ejemplos. Si los folíolos están divididos, la disposición de los foliólulos será pinnada. No se conocen hojas bipalmadas o bipalmaticompuestas.5

[editar]Anatomía

[editar]Epidermis

La epidermis es usualmente el tejido protector de la hoja, aunque excepcionalmente las pérulas —escamas que rodean la yema— de algunas dicotiledóneas leñosas pueden desarrollar una peridermis para cumplir idéntica función. Las células epidérmicas de la mayoría de las especies carecen decloroplastos. Sin embargo, en las hidrófitas sumergidas y en las higrófitas las células tienen cloroplastos. La cutícula es generalmente más gruesa en laepidermis adaxial. En plantas de ambientes húmedos la cutícula es delgada, en cambio en las plantas adaptadas a climas áridos, la cutícula puede ser tan espesa que le da a las hojas una consistencia coriácea.21 La epidermis está generalmente formada por una sola capa de células, pero puede ser múltiple o pluriestratificada como en el caso de Nerium y de Ficus. En Peperomia la epidermis múltiple puede tener hasta quince capas de células, siendo aún más gruesa que el mesófilo.21

[editar]Estomas


Los estomas están formados por dos células especializadas, llamadas
 células oclusivas, que delimitan una abertura llamada ostíolo o poro. Adyacentes a las células oclusivas, y asociadas funcionalmente a ellas, muchas especies presentan dos o más células denominadas células anexas,subsidiarias o adjuntas. Por debajo del ostíolo hay un amplio espacio intercelular llamado cámara subestomática, el que comunica el sistema de espacios intercelulares del mesófilo con el aire exterior. Cuando los estomas se disponen en filas, las cámaras estomáticas se encuentran interconectadas.23Las monocotiledóneas con hojas paralelinervadas, algunas dicotiledóneas y las coníferas con hojas aciculares presentan los estomas dispuestos en filas paralelas, mientras que en las dicotiledóneas con hojas de venación reticulada los estomas se hallan dispersos. En las plantas que se desarrollan en climas con una humedad media (mesófitas) los estomas están dispuestos al mismo nivel que las otras células de la epidermis, pero en muchas gimnospermas y en las hojas de las plantas xerófitas, los estomas están hundidos y como suspendidos de las células anexas que forman una bóveda o bien, se hallan ocultos en criptas. En las plantas de ambientes húmedos, finalmente, los estomas están elevados con respecto al nivel de las demás células epidérmicas.23Los estomas son grupos de dos o más células epidérmicas especializadas tanto morfológica como fisiológicamente y cuya función es regular el intercambio gaseoso y la transpiración de la planta. Se encuentran en todas las partes verdes aéreas de la planta, particularmente en las hojas, donde pueden hallarse en una o ambas caras, más frecuentemente en el envés. El número de estomas puede oscilar entre 22 y 2230 por mm2 de superficie foliar, dependiendo tanto de la especie considerada como de las condiciones ambientales. Las plantas parásitas sin clorofila como Monotropa y Neottiano tienen estomas, mientras que (Orobanche los tiene solamente en el tallo. En las restantes plantas autotróficas, las partes aéreas sin clorofila -como las hojas variegadas- pueden tener estomas pero éstos no son funcionales, al igual que aquellos que se hallan en los pétalos.22
En vista superficial, las células oclusivas de las dicotiledóneas, gimnospermas, muchas monocotiledóneas y las pteridofitas tienen forma de riñón, salchicha o de banana con extremos redondeados. Suelen presentar superficialmente un reborde cuticular externo que a veces forma una verdadera cúpula o vestíbulo estomático. La cutícula se extiende sobre el ostíolo y a veces también forma salientes sobre la cara interna, constituyendo unvestíbulo interno. Incluso tapiza las células que limitan por dentro a la cámara subestomática.24 Las células oclusivas de las gramíneas son alargadas, con extremos bulbosos y se hallan conectadas por poros, originados por un desarrollo incompleto de la pared celular, de modo que ambas células constituyen una unidad fisiológica. Las paredes celulares son delgadas hacia los extremos bulbosos y gruesas en la región media.22 Las ciperáceas, al igual que las gramíneas, tienen células oclusivas y núcleos con forma de pesas, pero la disposición de las microfibrillas de celulosa es diferente.25
La pared celular de las células oclusivas que delimita el ostíolo es, en todos los casos, más gruesa que la pared opuesta, las cual es más delgada y flexible que las paredes tangenciales. Esta característica está relacionada con la capacidad de las células oclusivas de cambiar de forma e incrementar su volumen para controlar el tamaño del ostíolo. Los movimientos estomáticos son el resultado de los cambios en la turgencia relativa de las células oclusivas y anexas, causados por cambios en el potencial osmótico.26 Se ha comprobado que los plasmodesmos que conectan a las células oclusivas con sus vecinas están interrumpidos a la madurez del estoma; la ausencia de comunicaciones intercelulares con otras células es lo que les permite a las oclusivas funcionar independientemente para controlar su turgencia.27
Los estomas se clasifican de acuerdo al número y disposición de las células anexas. Se dice anomocítico o ranunculáceo cuando no presenta células anexas, es el tipo más frecuente en las dicotiledóneas y en algunas monocotiledóneas, como las amarilidáceas y las dioscoreáceas. Cuando el estoma posee dos células anexas dispuestas paralelamente con respecto a las oclusivas, se denomina paracítico o rubiáceo. Si presenta tres células anexas, siendo una de ellas más pequeña se denomina anisocítico y es característico de las crucíferas y solanáceas. El estoma tetracítico lleva cuatro células subsidiarias y es común en varias familias de monocotiledóneas como las aráceascommelináceas y musáceas. El diacítico presenta dos células anexas perpendiculares a las oclusivas y se encuentra en las familias de las cariofiláceas y las acantáceas. Los dos últimos tipos de estomas exhiben mumerosas células subsidiarias. El tipo ciclocítico, dispuestas en uno o dos círculos alrededor de las células oclusivas, mientras que elhelicocítico las dispone en espiral alrededor de las oclusivas.

[editar]Tricomas


Con respecto a su estructura, los tricomas presentan paredes celulares de celulosa, las que se hallan recubiertas de una cutícula, o paredes secundarias lignificadas. A veces las paredes están impregnadas de
sílice o carbonato de calcio que le otorgan mayor rigidez. El contenido del citoplasma varía con la función de cada tipo de tricoma, en general están altamente vacuolados, pueden tener cristales o cistolitos. Frecuentemente los pelos unicelulares grandes tienen núcleos poliploides.28Los tricomas o pelos son apéndices de la epidermis que pueden presentar diversas formas, estructuras y funciones. Se originan a partir de meristemoides epidérmicos, iniciándose como una protuberancia que se agranda y puede o no dividirse. Las células que forman los tricomas pueden permanecer vivas a la madurez o perder el contenido de su citoplasma. Hay varios tipos de tricomas y una misma planta puede presentar varios de ellos. Asimismo, los tipos de tricomas varian entre las distintas especies, por lo que son útiles entaxonomía, para caracterizar e identificar especies y géneros. La hoja que no presenta tricomas se diceglabra.28
Hay diversos tipos de tricomas. Entre ellos se encuentran las papilas, las cuales son abultamientos poco pronunciados, muchas veces sensitivos, pueden ser delgadas, parecidas a pelos, como los de los pétalos de la rosa. Los pelos tectores son otro tipo de tricoma, los que pueden estar compuestos de una o de varias células. Los pelos simples unicelulares presentan una porción basal que se inserta en la epidermis y que se denomina «pie» y una porción distal que se llama «cuerpo». Los pelos simples pluricelulares presentan una o varias filas de células. Los pelos ramificados unicelulares pueden tener forma de «T», o sea con dos brazos opuestos y se llaman pelos malpighiáceos. También pueden presentar varios brazos, en ese caso se deonominan pelos estrellados. Los pelos ramificados pluricelulares pueden recibir diferentes denominaciones según como se dispongan las células. Así, los pelos dendríticos son semejantes a árboles; los pelos estrellados presentan ramas en el mismo plano o en planos diferentes. Las escamas o pelos peltados son tricomas pluricelulares que presentan todas las células en el mismo plano, tomando la apariencia de un escudo. Los pelos glandulares osecretores, finalmente, pueden ser unicelulares y simples o pluricelulares y bastante complejos, generalmente tienen un pie y una cabeza secretora uni o pluricelular. El producto secretado frecuentemente se aloja entre la pared externa de la célula y la cutícula, que se levanta y al final se rompe. Esa cutícula en algunos casos puede regenerarse y repetirse la acumulación de líquido, o el tricoma puede degenerar después de una sola excreción.28
Existen tricomas especializados en la defensa de la planta contra los animales herbívoros. Un ejemplo es el de los ticomas de la epidermis de las hojas y de las estípulas de la alfalfa (Medicago scutellata), que presenta pelos secretores capitados, con un largo estípite, que defienden a la planta contra las larvas del gorgojo de la alfalfa, Hypera postica. La secreción de estos pelos se acumula debajo de la cutícula y en contacto con las larvas del insecto se exuda un fluido pegajoso, el cual las inmoviliza. En las especies silvestres de papa hay tricomas defensivos que atrapanáfidos. La resistencia de Passiflora adenopoda a las larvas de las mariposas del género Heliconius se debe a sus tricomas ya que las larvas al desplazarse sobre la hoja quedan empaladas en ellos.29 30
HidatodosEn las plantas insectívoras la epidermis foliar esta cubierta por glándulas digestivas. En Drosera, por ejemplo, la cabeza de estas glándulas complejas está recubierta por una cutícula provista de numerosos poros; las capas más externas son células secretoras con paredes laberínticas; la capa subyacente está formada por células de tipo endodérmico, con engrosamientos radiales impermeables. El centro está ocupado por traqueidas rodeadas por una capa de células de transferencia. Las células secretoras son muy complejas en su funcionamiento porque además de secretar enzimas digestivas absorben los nutrientes digeridos.31 Utricularia, un género de plantas palustres o acuáticas sumergidas perteneciente a laslentibulariáceas, posee órganos vegetativos especializados para la captura y la digestión de pequeños organismos, los que se denominan «trampas» outrículos. Tales trampas tienen forma globosa y presentan una boca rodeada de apéndices filiformes, con un zaguán cerrado por una membrana que constituye la «puerta». La membrana presenta apéndices sensitivos que, al ser tocados por una presa, determinan el brusco desplazamiento de la membrana hacia dentro de la trampa, provocando una súbita corriente de agua hacia el interior que arrastra también a la presa. Cuando la trampa se llena de agua la membrana cae, cerrando el utrículo. Internamente, los utrículos presentan pelos glandulares especializados en la secreción deenzimas que digieren a las presas.32 Pinguicula es otra planta carnívora perteneciente también a las lentibulariáceas, sus hojas capturan pequeños insectos, que luego digiere. Vive en ambientes donde el nitrógeno es escaso, y suple su falta con el nitrógeno de las proteínas de los insectos. Como todos los miembros de su género, estas láminas foliares están densamente cubiertas por glándulas pediceladas mucilaginosas y con glándulas digestivas sésiles y planas. Las glándulas pediceladas están constituidas por un grupo de células secretoras en la parte superior de un pie unicelular y producen una secreción mucilaginosa con la cual forman gotas visibles en la superficie de la hoja. Esta apariencia húmeda probablemente ayude a atraer a sus presas en busca de agua, un fenómeno similar se observa también en las droseras. Estas gotas secretadas tienen como función principal atrapar a los insectos, que al hacer contacto, inducen la liberación de una cantidad adicional de mucílago. El insecto pelea, tocando y activando más glándulas y atrapándose aún más a sí mismo en el mucílago. Por otra parte, Pinguicula puede doblar el borde de sus hojas ligeramente gracias a sutigmotropismo, haciendo que una mayor cantidad de glándulas entre en contacto con el insecto atrapado. Luego, mediante la liberación del contenido de sus glándulas sésiles, las cuales se encuentran sobre la superficie de la hoja, digiere al insecto por acción de diversas enzimas. Estas enzimas, entre las cuales se incluyen la amilasa, la esterasa, la fosfatasa, la peptidasa y la ribonucleasa digieren la mayor parte de los componentes del cuerpo del insecto. Estos fluidos posteriormente son absorbidos a través de los poros en la cuticula de sus hojas, dejando solo en la superficie elexoesqueleto de quitina de los insectos más grandes.33

[editar]


Gotitas de agua producidas por gutaciónen una dicotiledónea.
Las hojas de 350 géneros pertenecientes a 115 familias eliminan agua líquida a través de hidatodos por el proceso de gutación. En algunas plantas tropicales, como Colocasia (Araceae), la cantidad eliminada por noche supera los 300 ml.34
Los hidatodos pueden ser de tipo activo o de tipo pasivo. Estos últimos, frecuentes en las gramíneas, eliminan agua por ósmosis cuando aumenta la presión radical. Los hidatodos activos, en cambio, eliminan agua con independencia de la presión de las raíces. Los hidatodos epidérmicos o tricómicos secretan una solución acuosa con algunos compuestos orgánicos o inorgánicos (secreción ecrina, por bombeo de iones metálicos a través de la membrana plasmática). En las hojas jóvenes de Cicer arietinum los hidatodos epidérmicos consisten en un pedúnculo uniseriado y una cabeza oval pluricelular. La solución acuosa se acumula bajo la cutícula y cuando alcanza un cierto volumen se abren poros en la cutícula y aparecen gotitas en la superficie. Los hidatodos epitémicos presentan un tejido parenquimático especializado, elepitema, situado al final de una o varias vénulas de las hojas. Rodeando el epitema hay una vaina de células dispuestas apretadamente, a menudo con las paredes adyacentes cutinizadas, formando una capa de tipo endodérmico, que impide el reflujo hacia el apoplasto. Muchas de estas células están diferenciadas como células de transferencia. Hacia el exterior, el epitema está limitado por la epidermis, y la salida del agua se produce a través de uno o varios estomas modificados, que se diferencian porque las células oclusivas usualmente no pueden cerrar el ostíolo.34

[editar]Mesófilo

El interior de la hoja, entre la epidermis adaxial y abaxial, se denomina mesófilo. El mesófilo está constituido por tejidos vasculares, que forman las venas de las hojas, y un tejido parenquimático especializado para realizar la fotosíntesis denominado clorénquima.

[editar]Clorénquima


Células de clorénquima esponjoso.

Células de clorénquima en empalizada.
Generalmente las células del parénquima clorofiliano tienen paredes delgadas. Dejan abundantes espacios intercelulares que constituyen un sistema de aireación bien desarrollado para facilitar el intercambio de gases necesario para permitir la asimilación del dióxido de carbono. Sus células tienen un número variable de cloroplastos, que durante ciertos momentos del día pueden contener almidón de asimilación. Presentan numerosas vacuolas o una sola. El clorénquima puede ser de dos tipos. El parénquima clorofiliano en empalizada está formado por células cilíndricas, alargadas, que logran así más superficie y menor volumen, muy ricas en cloroplastos y con espacios intercelulares pequeños. El segundo tipo es el parénquima clorofiliano lagunar o esponjoso que está formado de células cortas, redondeadas o variadamente lobuladas, menos ricas en cloroplastos y que dejan espacios intercelulares grandes, llamados lagunas, por donde circula el aire necesario para el intercambio gaseoso y la respiración.35

[editar]Estructura del mesófilo

El mesófilo puede ser homogéneo, cuando está formado un solo tipo de células de clorénquima. En este caso, las células pueden ser más o menos redondeadas, como sucede en plantas herbáceas como el lino(Linum usitatissimum) o la lechuga (Lactuca sativa), o estar constituido por células alargadas como sucede en la remolacha (Beta vulgaris). Las especies de Eucalyptus con hojas péndulas también presentan este tipo de mesófilo.35

Diagrama de corte transversal de una hoja.
Cuando el clorénquima de la hoja se diferencia en parénquima en empalizada y parénquima lagunoso, el mesófilo se dice heterogéneo. Según la ubicación de los dos tipos de clorénquima se distinguen tres tipos de estructura del mesófilo. El mesófilo dorsiventral es el tipo de estructura en el que el clorénquima en empalizada está hacia la cara adaxial de la hoja y el clorénquima lagunoso hacia la cara abaxial, como es el caso de la vid (Vitis) y el ligustro (Ligustrum). Esta organización se encuentra usualmente en las hojas que se orientan horizontalmente. El número de capas de clorénquima en empalizada es variable: hay una sola en el caso del tabaco (Nicotiana tabacum) y de la batata(Ipomoea batatas), dos en el laurel rosa (Nerium oleander) y en la alfalfa (Medicago sativa) y tres en el caso del peral (Pyrus). El número de capas del clorénquima en empalizada puede incluso variar de una hoja a otra del mismo individuo. Así, en el caso del arce (Acer platanoides), un árbol de copa amplia, las hojas periféricas tienen más capas de clorénquima que las que se encuentran en interior de la copa. Asimismo, las hojas que están más expuestas al sol son más gruesas que las que están en la sombra, presentan un mayor desarrollo del clorénquima en empalizada y un mayor número de cloroplastos. El mesófilo isobilateral es aquella estructura en la que el clorénquima en empalizada se encuentra sobre las dos caras del limbo foliar y el parénquima lagunoso queda entre medio de ellas. Esta organización es característica de las plantas con hojas erguidas o péndulas, tales como el clavel (Dianthus). El mesófilo céntrico es un tipo de estructura que se encuentra en especies con hojas muy angostas, casi cilíndricas. En este tipo de organización del mesófilo el parénquima en empalizada adaxial forma una capa casi continua con el abaxial, como por ejemplo en Salsola. Esta estructura es frecuente en plantas xerofíticas y plantas suculentas, cuyo mesófilo contiene células pequeñas, el clorénquima en empalizada está más desarrollado que el esponjoso y frecuentemente está reforzado por esclerénquima.35

[editar]Funciones

[editar]Transpiración


Algunas plantas xerófitas reducen la superficie de sus hojas durante períodos de déficits hídrico (izquierda). Si las temperaturas desscienden lo suficiente o el agua está disponible en niveles adecuados, las hojas se expanden nuevamente (derecha).
La transpiración es un proceso similar al de evaporación. Es una parte del ciclo del agua y consiste en la pérdida de vapor de agua a partir de partes de la planta, especialmente de las hojas, aunque también puede producirse a partir de los tallos. La mayor parte de la transpiración, no obstante, se produce a través de los estomas. La apertura y cierre de estas estructuras tiene un costo energético asociado, pero permite la difusión del dióxido de carbono necesario para la fotosíntesis desde el aire hacia el interior de la hoja, la salida de oxígeno desde dentro de la hoja hacia el exterior y la pérdida de vapor de agua. La transpiración también refresca a las plantas y permite el flujo de masa de los nutrientes minerales y del agua desde las raíces hacia las hojas. Este flujo de masa de agua desde las raíces hasta las hojas está causado por la disminución de la presión hidrostática en las partes superiores de las plantas debido a la difusión de agua desde los estomas a la ambiente. El agua es absorbida desde el suelo hacia las raíces por el proceso de ósmosis, y cualquier mineral disuelto en el agua será acarreado hacia las hojas a través del xilema.36
La tasa de transpiración está directamente relacionada con la evaporación de las moléculas de agua de la superficie de la planta. La transpiración estomática representa la mayor parte de la pérdida de agua por una planta, si bien algo de evaporación directa también se lleva a cabo a través de la cutícula de las hojas y de los tallos jóvenes. La cantidad de agua que se desprende depende en cierto modo de la cantidad de agua que las raíces de la planta han absorbido. También depende de las condiciones ambientales tales como la intensidad de luz, la humedad, la velocidad del viento y la temperatura. La transpiración se produce cuando el sol calienta el agua dentro de la hoja. Este calentamiento cambia gran parte del agua en vapor de agua y este gas puede escapar al medio a través de los poros estomáticos. La transpiración ayuda a enfriar el interior de la hoja debido a que el vapor que escapa hacia la atmósfera ha absorbido el calor. La cantidad de agua que una planta pierde por la transpiración estomática depende de su tamaño, de la intendidad lumínica, del grado de apertura de los estomas y la demanda evaporativa de la atmósfera que rodea a la hoja.37 Un árbol completamente crecido puede perder varios cientos de litros de agua a través de sus hojas en un día caluroso y seco. Alrededor del 90% del agua que entra en las raíces de la planta se usa para este proceso. En tal sentido, se denomina eficiencia del uso del agua a la relación entre la masa de agua transpirada con respecto a la masa de materia seca producida por una planta. Esta relación se halla entre 200 y 1000 para la mayoría de los cultivos, es decir, las plantas de los cultivos transpiran entre 200 a 1000 kg de agua por cada kg de materia seca producida.38

[editar]Fotosíntesis

La fotosíntesis es el proceso por el cual la materia inorgánica se convierte en compuestos orgánicos gracias a la energía aportada por la luz. En este proceso la energía luminosa se transforma en energía química estable, siendo el adenosín trifosfato (ATP) la primera molécula en la que queda almacenada esa energía química. Con posterioridad, el ATP es utilizado en interior de la célula para sintetizar moléculas orgánicas de mayor estabilidad, tales como carbohidratos. Cada año los organismos fotosintetizadores fijan en forma de materia orgánica en torno a 100.000 millones de toneladas de carbono.39 40
Los orgánulos citoplasmáticos encargados de la realización de la fotosíntesis son los cloroplastos, unas estructuras polimorfas y de color verde (esta coloración es debida a la presencia del pigmento clorofila) propias de las células vegetales. En el interior de estos orgánulos se halla una cámara que contiene un medio interno llamado estroma, que alberga diversos componentes, entre los que cabe destacar enzimas encargadas de la transformación del dióxido de carbono en materia orgánica y unos sáculos aplastados denominados tilacoides o lamelas, cuya membrana contiene pigmentos fotosintéticos. En términos medios, una célula foliar tiene entre cincuenta y sesenta cloroplastos en su interior.41 39 Los organismos que tienen la capacidad de llevar a cabo la fotosíntesis son llamados fotoautótrofos (otra nomenclatura posible es la de autótrofos, pero se debe tener en cuenta que bajo esta denominación también se engloban aquellas bacterias que realizan la quimiosíntesis) y fijan el CO2 atmosférico. En la actualidad se diferencian dos tipos de procesos fotosintéticos, que son la fotosíntesis oxigénica y la fotosíntesis anoxigénica. La primera de las modalidades es la propia de las plantas superiores, las algas y las cianobacterias, donde el dador de electrones es el agua y, como consecuencia, se desprende oxígeno. Mientras que la segunda, también conocida con el nombre de fotosíntesis bacteriana, la realizan las bacterias purpúreas y verdes del azufre, en las que en dador de electrones es el sulfuro de hidrógeno, y consecuentemente, el elemento químico liberado no será oxígeno sino azufre, que puede ser acumulado en el interior de la bacteria, o en su defecto, expulsado al agua.41
La ecuación química general para la fotosíntesis es:
2n CO2 + 2n DH2 + fotones → 2(CH2O)n + 2n A
Dióxido de carbono + donante de electrones + energía lumínica → carbohidrato + donante de electrones oxidado En la fotosíntesis oxigénica el agua es el donante de electrones y, debido a que su hidólisis libera oxígeno, la ecuación para este proceso es:
2n CO2 + 4n H2O + fotones → 2(CH2O)n + 2n O2 + 2n H2O
Dióxido de carbono + agua + energía lumínica → carbohidrato + oxígeno + agua
Frecuentemente 2n moléculas de agua se cancelan en ambos miembros de la ecuación, lo que produce:
2n CO2 + 2n H2O + fotones → 2(CH2O)n + 2n O2
Dióxido de carbono + agua + energía lumínica → carbohidrato + oxígeno

[editar]Productividad

Producción primaria neta de de los principales ecosistemas terrestres.42
EcosistemaProducción primaria neta (peso seco en g·m-2·año-1)
Tundras árticas100
Tundras de arbustos pequeños250
Taiga del norte450
Taiga del sur850
Bosque de hayas1300
Bosque de robles900
Estepas templada120
Estepa seca420
Desierto de semi arbustos pequeños122
Desiertos subtropicales50
Bosques subtropicales2450
Bosque tropical lluvioso3250
Pantanos de Sphagnum con bosque340
Manglares930
Océano abierto125
Tierra agrícola650

[editar]Adaptaciones especiales de las hojas

Algunas plantas, como los cactus, han transformado sus hojas en espinas; son los troncos, carnosos y aplanados, los que ejercen la función fotosintética. Las hojas de los troncos subterráneos, como en la cebolla, pueden transformarse en órganos de reserva de nutrientes. El caso más extremo parece ser el de las plantas carnívoras, en que la hoja se transforma en unatrampa, como si de un predador se tratara.

Zarcillo de una vid.
  • Catáfilos: son hojas sencillas, escamiformes, papiráceas y sin clorofila. Cuando son un intermedio entre cotiledones y hojas verdaderas se denominan protofilos. También son catáfilos las escamas de las yemas invernantes así como también las que recubren los bulbos, así como cualquier hoja que queda por debajo de los nomofilos y por encima de los cotiledones.

Espinas foliares en Opuntia.
  • Zarcillos: son órganos de los que se sirven ciertas plantas para trepar o sujetarse a otras, enroscándose. Existe una gran variedad de zarcillos, siendo los más importantes de tipo caulinar —derivados de tallos— o bien, de tipo foliar —derivados de hojas— que son los que interesan aquí. Son hojas modificadas que crecen helicoidalmente, de manera que si el cuerpo al que están unidos, crece o se aleja, el zarcillo puede estirarse sin romperse ni hacer perder el soporte al vegetal. Se observan zarcillos, por ejemplo, en la vid (Vitis vinifera) o en el tumbo (Passiflora mollissima).
  • Espinas: son hojas aciculares cortas y lignificadas, no clorofilianas, que cumplen función de protección. Igual que en el caso de los zarcillos, no todas las espinas son hojas modificadas; algunas son apéndices epidérmicos —los aguijones de las rosas—, otras son tallos modificados y, por último, muchas son hojas modificadas. Este último es el caso en las crasuláceas y las cactáceas, que son las más populares de las plantas espinosas. Estas plantas almacenan agua en sus hojas y tallos suculentos ya que su hábitat se halla típicamente en zonas secas y calurosas, donde el agua es escasa.

[editar]Heterofilia foliar


Heterofilia en la hiedra (Hedera helix). Las hojas de las ramas fructíferas son enteras, no lobuladas a la manera característica de la especie.
Es el fenómeno consistente en que en una misma planta aparezcan hojas asimiladoras (nomofilos) diferentes. En muchas plantas existen diferencias entre, por ejemplo, las hojas de las ramas más altas y las más bajas, o entre los ejemplares arbustivos y los arbóreos. Hay heterofilia propiamente dicha cuando hay dos o más clases de hojas con diferencias cualitativas de morfología o tamaño.
Ejemplos de heterofilia los encontramos en ciertos helechos tropicales, en Eichornia azurea que tiene hojas ovales y lineares, o en ranúnculos acuáticos, cuyas hojas superficiales son muy diferentes de las sumergidas. En el género Juniperus hay especies con hojas en aguja y otras, comoJuniperus thurifera, con hojas en escama, pero en estas últimas las hojas de los ramas juveniles son aciculares.
También el guapuruvú (Schizolobium parahyba) presenta hojas similares a las del helecho arborescente al principio y hojas grandes y distintas al desarrollarse la planta, y cuando aparecen estas hojas es cuando se desarrolla la floración. Además, en esta planta no existe diferenciación entre las hojas, tronco y ramas, ya que en todo el árbol se produce la fotosíntesis.

[editar]Falsas hojas

  • Filodios y filocladios: Son órganos laminares semejantes a hojas, pero que por su origen evolutivo, su ontogénesis (su proceso de desarrollo) y su anatomía interna, resultan no serlo. En general se trata de peciolos y tallos dilatados que cumplen en algunas plantas la función asimiladora que normalmente corresponde a las hojas, a las que funcionalmente sustituyen. Uno de los ejemplos más conocidos de filodios lo ofrecen especies de los géneros Acacia y Ruscus; los ejemplares nuevos y las ramas del año llevan hojas verdaderas compuestas, mientras la mayor parte del "follaje" está constituida por filodios o filocladios que son más duros y alargados.
  • Filoides. Es el nombre que se da a órganos semejantes en su morfología y función a las hojas, pero sin su anatomía interna, que se encuentran en plantas terrestres (musgos y hepáticas) que divergieron evolutivamente de las plantas vasculares, portadoras de verdaderas hojas, antes de la evolución de la anatomía foliar.

[editar]Senescencia foliar

La senescencia de las hojas es una serie de eventos ordenados y cuidadosamente controlados que permiten a las plantas conservar sus recursos, prepararse para un período de reposo y descartar tejidos ineficiente.6 En las plantas anuales algunas de las hojas mueren precozmente si bien la mayor parte de las hojas mueren al mismo tiempo que el resto de los órganos. En los árboles, arbustos y plantas herbáceas perennes, en cambio, la defoliación es un fenómeno periódico, muy complejo, que se produce, en la mayoría de las especies por un mecanismo de abscisión.7 Siguiendo el ritmo y el modo en el que ocurre la defoliación, se pueden distinguir distintos tipos de plantas. Así, hay plantas con defoliación anual en las que las hojas viven solo algunos meses, generalmente desde la primavera hasta el otoño. Dentro de este grupo se reconocen aquellas —como los encinos— en las que las hojas amarillean y mueren sin separarse del tallo, de las plantas de hoja caduca en las que la defoliación es un fenómeno activo que ocurre a través de tejidos especializados que forman la denominada zona de abscisión. En las primeras, las hojas que quedan sujetas a los tallos por mucho tiempo ya que su caída es pasiva y generalmente determinada por el viento. En las segundas, la caída de las hojas es precedida por una migración de sustancias desde las hojas hacia el tallo. Las hojas amarillean y, a veces, enrojecen por la acumulación de antocianinas y se separan del tallo estando todavía vivas, muriendo después de caer.7 Por otro lado, hayplantas con follaje persistente —como los pinos— cuyas hojas viven de dos a cinco años. El conjunto de las hojas, el follaje, se renueva parcialmente cada año. La caída de las hojas en este caso es también un fenómeno activo ya que está determinado por la formación de una zona de abscisión.7

[editar]El color de las hojas en otoño


En el otoño, las hojas de muchos árbolesse tornan de color rojo, como se aprecia en este ejemplar de Acer rubrum.

En el otoño, las hojas de muchos árbolesse tornan de color rojo, como se aprecia en este ejemplar de Acer rubrum.
Las hojas de muchas especies muestran un color rojo bien diferenciado durante el otoño. En algunos árboles, como el arce rojo Americano (Acer rubrum) o el roble escarlata (Quercus coccinea), los flavonoles—un tipo de flavonoide— incoloros se convierten en antocianinas rojas cuando la clorofila de sus hojas se degrada.8 En otoño, cuando la clorofila se descompone, los flavonoides incoloros se ven privados del átomode oxígeno unido a su anillo central, lo que los convierte en antocianinas, dando colores brillantes. Esta transformación química que consiste sólo en la pérdida de un átomo de oxígeno es la responsable de nuestra percepción de los colores del otoño. Estos pigmentos probablemente son las que protegen a las hojas del efecto de los rayos UV del Sol. Se especula que esta protección de las hojas aumenta su efectividad para transportar nutrientes durante su senescencia.43 44

[editar]Mecanismo anatómico y regulación hormonal de la abscisión

Las heladas y bajas temperaturas del otoño dañan de forma rápida los tejidos vivos de las hojas y de los pecíolos de muchas especies. Una vez muertas, los recursos que la células de las hojas poseen no se hallarán disponibles para la planta. Por esta razón las especies caducifolias utilizan una secuencia de procesos coordinados para extraer sistemáticamente los valiosos recursos de las hojas antes que estas mueran. Una vez que tales recursos son capturados por las plantas, los tejidos muertos y moribundos de las hojas se descartan. Hacia el final de este proceso de senescencia se desarrollan líneas de fractura en la base de las hojas. Estas líneas de fractura impiden que la planta se exponga a daños subsecuentes por la caída de las hojas gracias al sellado de los tejidos que pronto serán descartados.6 La caída de las hojas antes de su muerte se debe a la intervención de tejidos especializados que constituyen una región definida en la base de la hoja, a menudo visible exteriormente como una constricción en forma de anillo, que se denomina zona de abscisión. Esta zona aparece en forma de un disco de células pequeñas con paredes delgadas, alineadas regularmente y sin ningún tejido de sostén. La zona de abscisión se diferencia después en dos capas superpuestas: una capa de abscisión o separación hacia la hoja y una capa protectora suberosa hacia el tallo. En la capa de abscisión o separación las laminillas medias y a menudo las paredes primarias de las células se gelifican, de manera que las células ya no están soldadas entre sí y se separan. La hoja queda sostenida solamente por los hacecillos vasculares, donde los vasos son obstruídos por tílides, y entonces cae, ya sea por su propio peso o por la acción del viento. En la capa protectora suberosa las paredes celulares se impregnan de suberina y forman un súber cicatricial que protege la cicatriz dejada sobre el tallo por la caída de las hojas. El súber cicatricial puede formarse antes de la caída de las hojas —como en el caso de la magnolia— o inmediatamente después —como en la higuera—. En las especies leñosas la capa protectora tarde o temprano es reemplazada por la peridermis que se desarrolla debajo de la capa protectora en continuidad con la peridermis de otras partes del tallo. Las auxinas son agentes inhibidores de la abscisión foliar, mientras el etileno es un agente inductor, que se utiliza como defoliante en la cosecha mecánica de algunos cultivos.7 La regulación de la abscisión es una herramienta corriente en agricultuta en conexión con la creciente mecanización de muchas prácticas, tales como la defoliación controlada, el raleo de los frutos y el ajuste del momento de la cosecha de los mismos.

[editar]Evolución de las hojas


Reconstrucción del aspecto general deAglaophyton major, una planta del Devónicoinferior, cuyos fósiles fueron hallados en el yacimiento Rhynie Chert. Los rizoides son unicelulares y se localizan en la zona ventral del rizoma creciendo a partir de protuberancias formadas en la zona a partir de las células corticales.45
Durante la evolución de las plantas las hojas se han originado al menos en dos ocasiones independientes. El legado de estos eventos evolutivos históricos está representado en las floras actuales por los microfilos de las licofitas (licopodiosSelaginella e Isoetes) y los megafilos de las eufilofitas (helechosgimnospermas y angiospermas). Se considera que los microfilos, con su vasculatura característica y su ausencia de ramificación, han evolucionado a partir de excrecencias espinosas y son anteriores a los megafilos en el registro fósil de las plantas terrestres. De mayor importancia, sin embargo, fue el origen de los megafilos en las plantas vasculares a través de la modificación del desarrollo de las ramas laterales debido a que la gran mayoría de las aproximadamente 250.000 especies de plantas con flores existentes, así como la mayoría de las gimnospermas, utilizan un megafilo de lámina plana con una red de venas para la captación de la energía solar y la asimilación de carbono fotosintético. Los megafilos alteraron, de hecho, la trayectoria evolutiva de las plantas y de los animales terrestres, los ciclos biogeoquímicos de los nutrientes, del agua y del dióxido de carbono y el intercambio de energía entre la superficie terrestre y la atmósfera.46 Una medida de su éxito en ambientes terrestres es la capacidad de las hojas para soportar condiciones climáticas extremas entre los trópicos y la tundra, mientras que al mismo tiempo facilitan la fijación neta de aproximadamente 207 mil millones de toneladas de CO2 (56,4 × 1015 g C) año-1 a escala global. Esta producción primaria proporciona energía para casi todas las formas de vida terrestre en la Tierra, especialmente a los tetrápodos y a los insectos, y enlazan muchos ecosistemas y procesos biogeoquímicos.47

Sawdonia ornata, unaZosterophyllopsida. En la imagen se observan los tallos aéreos dicótomos y las espínulas que poseían.

Asteroxylon mackiei es una especie fósil que vivió durante el Devónico inferior y descrita a partir de su descubrimiento en el yacimiento escocés de Rhynie Chert.48 las espinas o enaciones que cubrían su tallo presentaban trazas foliares.

El licopodio Isoetes presenta nicrofilos con una sóla traza foliar.
Evidentemente, las hojas son un éxito evolutivo de las plantas terrestres. Sin embargo, la llegada de los grandes megafilos tuvo lugar alrededor de 40-50 millones de años después del origen de las plantas vasculares, lo que sugiere que estaban lejos de ser una consecuencia inevitable de la evolución. Las primeras plantas vasculares ancestrales, que datan de finales del Silúrico, 410 millones de años atrás, estaban compuestos por un tallo simple o ramificado con esporangios, pero sin hojas.49Sorprendentemente, las plantas continuaron careciendo de hojas durante los siguientes 40-50 millones de años, cuando los megafilos finalmente se generalizaron hacia finales del período Devónico, 360 millones de años atrás.50 51 52 53 Esta aparición tardía de las hojas, una modificación estructural aparentemente simple, es sorpresiva al menos por tres razones. En primer lugar, la evidencia paleontológica muestra que el marco estructural necesario para el montaje evolutivo de una hoja simple (meristemas, vascularización, cutícula y la epidermis) se hallaban establecidos entre las plantas mucho antes de la llegada de los grandes megafilos. En segundo lugar, durante el mismo intervalo ocurrió una explosión sin precedentes de la innovación evolutiva de la historia de vida de las plantas, la cual fue testigo del ascenso de los árboles a partir de ancestros herbáceos, así como la evolución de los ciclos de vida complejos, incluyendo la invención de lasemilla. En tercer lugar, el pequeño megafilo de la planta Eophyllophyton bellum de principios del Devónico, muestra que las plantas tenían la capacidad para producir un megafilo simple mucho tiempo antes de que estas estructuras se generalizaran.54 55
En casi todas las plantas actuales las hojas constituyen una adaptación para incrementar la cantidad de luz solar que puede ser capturada para realizar la fotosíntesis. Se acepta que las hojas han evolucionado más de una vez en el transcurso de la evolución de las plantas y que, probablemente, se originaron como estructuras espinosas que actuaban como estructuras de defensa contra los herbívoros.
Las riniópsidas (Rhyniopsida) del yacimiento paleontológico de Rhynie Chert no estaban compuestas más que por ejes delgados sin ningún tipo de ramificación. Las trimerópsidas (Trimerophytopsida) del Devónico temprano son la primera evidencia que se dispone de algo que puede ser considerado como una hoja. Este grupo de plantas vasculares son reconocibles por sus masas de esporangios terminales, que adornan los extremos de los ejes que se pueden bifurcar o trifurcar.56 Algunos organismos, tales como Psilophyton presentaban excrecencias sobre los tallos, pequeñas y espinosas, que carecían de su propio aporte vascular.57 58 Casi al mismo tiempo, las Zosterophyllopsida fueron adquiriendo importancia. Este grupo es reconocible por sus esporangios con forma de riñón que crecían sobre cortas ramas laterales cercanas a los ejes principales.56 La mayoría de los miembros de este grupo tenía espinas pronunciado sobre sus ejes. Sin embargo, tales espinas carecían de traza foliar, y la primera evidencia de enaciones vascularizados ocurrió en el género Asteroxylon . Las espinas de Asteroxylonpresentaban una primitiva fuente vascular, ya que cada «hoja» estaba inervada por una traza foliar que surgía de la protoestela. Un fósil conocido como Baragwanathiaaparece en el registro fósil un poco antes, a finales del Silúrico.59 En este organismo, tales trazas foliares se continúan dentro de la «hojas» para formar la nervadura central.60
Asteroxylon61 y Baragwanathia se consideran como licopodios primitivos.56 Los licopodios existen todavía en la actualidad, siendo Isoetes un ejemplo bastante conocido. Estos licopodios actuales también presentan microfilos con una sola traza foliar y de pequeño tamaño. La mayor diferencia con los Lepidodendrales extintos, es que éstos exhibían microfilos de hasta un metro de longitud, pero en casi todos los casos, solo existía una única traza foliar.56
Las hojas más familiares, los megafilos, han evolucionado en cuatro oportunidades diferentes y de modo independiente: en los helechos, las colas de caballo, las progimnospermas y en las plantas con semilla.62 Parece que se han originado a partir de la dicotomización de ramas, que por primera vez se superpusieron entre sí, y, finalmente se desarrolló una "palma" que gradualmente evolucionó en estructuras similares a hojas. Entonces, según esta teoría del teleoma, los megafilos se componen de un grupo de ramas palmeadas60 En cada uno de los cuatro grupos que habrían de desarrollar megafilos, sus hojas evolucionaron por primera vez durante el Devónico tardío y el Carbonífero temprano, diversificando rápidamente hasta que los diseños estructurales básicos quedaron establecidos en el Carbonífero medio.62 La falta de diversificación posterior puede ser atribuida a limitantes de desarrollo.62 No obstnate, persiste también la duda acerca de las razones por las cuales las hojas tardaron tanto tiempo en aparecer sobre el planeta. De hecho, las plantas han estado sobre la superficie por lo menos por 50 millones de años antes de que los megafilos se hicieran significativos. Sin embargo, los mesófilos se conocen desde el Devónico temprano (el género Eophyllophyton) por lo que el desarrollo no pudo ser una barrera o una limitante para la aparición de las hojas ya que uno de sus constituyentes principales ya existía.63 la mejor explicación indica que la el CO2 atmosférico estaba declinando rápidamente durante este tiempo, cayendo cerca del 90% durante el devónico.64 Esto se correspondió con un incremento de 100 veces en la densidad de los estomas. Parece ser que la baja densidad estomática en el Devónico temprano significaba que la evaporación era limitada y que las hojas se sobre-calentarían si alcanzaban un mayor tamaño. La densidad estomática no podría incrementar, ya que las primitivas estelas y los sistemas radicales limitados no serían capaces de suministrar suficiente agua para suplir la tasa de transpiración. 65

[editar]Usos de las hojas


Varios cultivares de lechuga.

Endivia.

hojas frescas de romero.

Plantación de tabaco en Pensilvania,Estados Unidos.
Los seres humanos utilizamos una gran cantidad de plantas por sus hojas. En algunos casos, las hojas son comestibles (lechugaacelgaescarola) y son una fuente de fibras y minerales para la dieta. En el caso de muchas plantas condimenticias, las hojas frescas o secas se utilizan para para sazonar carnes, sopas, estofados y otros alimentos (romero, salvia, menta). También las hojas pueden llevar sustancias químicas que las convierten en una excelente fuente de esencias perfumíferas, como es el caso del lemongrass (Cymbopogon citratus). Las hojas secas del tabaco se utilizan utilizan para fumar en todo el mundo.
hojas de gramíneas y leguminosas se utilizan como forraje desde tiempos inmemoriales.
las hojas adultas se usan para techar casas rurales (Sabal mexicana entre otras palmeras) Las hojas de huano que se usan para techar, si están bien trabajadas, duran de 15 a 20 años. Las hojas preferidas para el techado son las de los individuos jóvenes ya que éstos aún no alcanzan grandes alturas y se obtienen más fácilmente y además son de mayor tamaño. 66 67
La práctica de mascar las hojas de ciertas plantas es usual en muchas culturas. Así, en los Andes peruanos los pueblos Quechua, Aymará entre otros, aprecian las hojas de Erythroxylin coca por las virtudes mágicas que se cree que éstas poseen. De hecho, juegan un papel importante en l amedicina popular ya que es prescripta para quebraduras de huesos, dolores, infecciones y disfunciones respiratorias. Esta costumbrte es más que accidental ya que las hojas contienen cocaína, el cual es un potente anestésico. El uso de las hojas de coca y la mitología asociada han existido por más de 4000 años. 68 69 Las artesanías son actividades, destrezas o técnicas empíricas, practicadas tradicionalmente por el pueblo, mediante las cuales con intención o elementos artísticos, se crean o producen objetos destinados a cumplir una función utilitaria cualquiera, o bien se las adorna o decora con el mismo o distinto material realizando una labor manual individualmente o en grupos reducidos, por lo común familiares e infundiendo en los caracteres o estilos típicos, generalmente concordes con los predominantes en la cultura tradicional de la comunidad".
Existen diferentes tipos de artesanías que utilizan hojas en su confección y que se realizan por diferentes etnias a lo largo de todo el mundo. Entre ellas, la cestería o tejidos duros, los tejidos blandos, los adornos corporales, los instrumentos de caza y pesca, los instrumentos musicales, etc. Para su confección se utilizan hojas de diferentes tipos de palmas.70
 Algunas hojas constituyen alimentos fundamentales para el hombre ya que son capaces de almacenar vitaminas, minerales, azúcar u otros nutrientes necesarios para la salud. Las hojas de las espinacas son un buen ejemplo de ello. Otras hojas se utilizan para dar sabor a los alimentos, como la hoja del laurel o para realizar preparados medicinales, como las hojas de la menta

 ¿ Qué son las flores?

Las flores son el órgano reproductor de las plantas. A partir de ellas, se producen los frutos y las semillas. Las semillas germinan y originan una nueva planta. Las flores están formadas por tres partes : cáliz, corola y pedúnculo floral
 El cáliz es la parte verde de la flor. Tiene una consistencia más fuerte que la corola y a sus piezas les llamamos sépalos.
La corola está formada por los pétalos que son las piezas coloreadas de las flores. Su función es atraer a los animales portadores del polen. La colora es la parte de la flor que convierte a este órgano en algo tan atractivo para los insectos y el principal motivo por el cual cultivamos las flores de jardinería.
Dentro del cáliz , y rodeado por la corola, se encuentra el androceo o parte masculina de la flor. El androceo está constituido por los estambres que unas hojas que se han transformado con la finalidad de llevar el polen. Cada estambre consta de un filamento, que es el fragmento mas alargado; y la antera que es una " especie de bolsa ", donde están encerrados los granos de polen.
Rodeado por el androceo, se encuentra el gineceo. El gineceo es la parte femenina de la flor. Esta formado por uno o varios pistilos que son órganos parecidos a una botella. Cada pistilo consta de un estigma que está situado en la parte superior en forma de receptáculo para recoger el polen. El estilo que sirve de tubo conductor hacia el ovario El ovario que es la parte inferior más ampliada y donde se encuentran los óvulos que han de ser fecundados por el polen masculino.
La mayoría de las flores son hermafroditas, es decir poseen órganos masculinos y femeninos a la vez. Algunas flores solamente son masculinas y otras son femeninas. La mayoría de las plantas poseen flores hermafroditas. Hay plantas, como el roble, que posee flores masculinas y femeninas separadas en la misma planta , y otras plantas, como el acebo, que poseen flores masculinas en una planta y flores femeninas en otra planta de la misma especie.
El pedúnculo floral une la flor a la rama.
Para que una flor se transforme en frutos debe estar previamente polinizada. La polinización es el paso del polen desde el aparato masculino de las plantas al aparato femenino. Este proceso se puede realizar a través de los animales que transportan el polen de una planta a otra o a través del viento que arrastra el polen y lo deja caer en otra planta. Mas raramente se produce la autopolinización entre las flores de una misma planta o dentro de una misma flor. 



Morfología de las flores: diversidad y tendencias evolutivas

Con más de 250.000 especies, las angiospermas forman un grupo taxonómico evolutivamente exitoso que conforma la mayor parte de la flora terrestre existente. La flor es el carácter definitorio del grupo y es, probablemente, un factor clave en su éxito evolutivo.3
La flor está unida al tallo por un eje, denominado pedicelo, que se dilata en su parte superior para formar el receptáculo en el cual se insertan las diversas piezas florales, las cuales son hojas modificadas que están especializadas en las funciones de reproducción y de protección. Desde afuera hacia adentro de una flor típica de angiosperma se encuentran las denominadas piezas estériles, con función de protección, y compuestas por sépalos y pétalos. Por dentro de los pétalos se disponen las denominadas piezas fértiles, con función reproductiva, e integrado porestambres y carpelos. Los carpelos de las angiospermas son, con respecto a los carpelos de sus ancestros, una estructura innovativa y privativa, ya que por primera vez en el linaje, encierran completamente al óvulo, de forma que el polen no cae directamente en el óvulo (como en las gimnospermas) sino en una nueva estructura del óvulo llamada estigma, que recibe al polen y estimula la formación del tubo polínico que llegará al óvulo para producirse la fecundación.7
La flor de angiosperma es una estructura compleja cuyo plan organizacional está conservado en casi todas las angiospermas, con la notable excepción de Lacandonia schismatica (Triuridaceae) que presenta los estambres en posición central rodeados de los carpelos.8 9 Esta organización tan invariable no indica en modo alguno que la estructura floral es conservada a través de los diferentes linajes de angiospermas. Por el contrario, existe una tremenda diversidad en la morfología y fisiología de todas y cada una de las piezas que componen a la flor, cuya base genética yadaptativa está comenzando a comprenderse en profundidad.3
Se ha sugerido que existe una tendencia en la evolución de la arquitectura floral, desde un plan "abierto", en el que las variaciones están determinadas por el número y disposición de las piezas florales, hacia un plan "cerrado", en el cual el número y disposición de las piezas están fijados.10 En tales estructuras fijas, las elaboraciones evolutivas ulteriores pueden tener lugar a través de la concrescencia, o sea, por medio de la fusión o estrecha conexión de las distintas partes.11 El plan de organización "abierto" es común en las angiospermas basales y las primeraseudicotiledóneas, mientras que el plan de organización "cerrado" es la regla en el clado de las gunnéridas (o núcleo de las eudicotiledóneas) y en las monocotiledóneas.12

[editar]Disposición de las piezas florales


Magnolia grandiflora, una flor espiralada.
Según la familia considerada, las piezas de la flor se pueden disponer sobre el receptáculo de dos modos diferentes. En el caso de la denominadadisposición espiralada, las piezas se insertan consecutivamente y a diferentes niveles, describiendo una espiral sobre el eje del mismo modo en que lashojas se insertan en el tallo. Ejemplo de especies con flores espiraladas son Magnolia grandiflora (magnoliáceas), Victoria cruziana (ninfeáceas) y Opuntia ficus-indica (cactáceas). El segundo tipo de disposición de los antófilos es la denominada disposición verticilada o cíclica, en el que las piezas se insertan en varios nudos del eje, disponiéndose en verticilos o ciclos. Cada pieza floral de un verticilo alterna con las piezas del siguiente, por ejemplo, los pétalosalternan con los sépalos. En estas flores, denominadas cíclicas o verticiladas, el número de verticilos puede variar, dependiendo nuevamente de la familia considerada. Muy frecuentemente las flores llevan cuatro ciclos (llamadas tetracíclicas), como las de Solanum (solanáceas): un ciclo de sépalos, uno de pétalos, otro de estambres y el último de carpelos. También son usuales las flores pentacíclicas (llevan cinco ciclos) ya que, en este caso, presentan dos ciclos de estambres en vez de uno solo, como las flores de Lilium (liliáceas). Hay muchos otros casos, finalmente, en los que las flores presentan varios verticilos de estambres, como en Poncirus trifoliata (rutáceas), en cuyo caso las flores presentan más de cinco ciclos.13
En las angiospermas primitivas las flores son relativamente voluminosas y sobre el receptáculo cónico y alargado llevan, en disposición helicoidal o espiralada, numerosas piezas periánticas, estambres y carpelos. En los grupos derivados, más evolucionados, se observa un progresivo empequeñecimiento (reducción) de las flores y una disminución del número de sus piezas (oligomerización). Se ha postulado que la base adaptativa de esta tendencia evolutiva es el desarrollo más rápido y un menor riesgo de daños cuando hay numerosas flores pequeñas que cuando hay pocas flores y frutos grandes y, por otro lado, una mejor integración espacial y formal de los órganos en las flores oligómeras que en las polímeras. En relación con esta reducción y oligomerización se produjo un acortamiento del eje floral o receptáculo, de modo tal que, pasando por estados intermedios helicoide-verticilados, se llegó finalmente a la posición uniformemente verticilada o cíclica de las piezas florales.14

[editar]Simetría floral

Se dice que en un objeto existe simetría cuando por lo menos un plano puede dividirlo en dos partes, tal que cada parte sea la imagen especular de la otra. Ciertas flores no presentan ningún plano de simetría por lo que se dicen asimétricas o irregulares, como es el caso de las "achiras" (las especies del género Canna). En la mayor parte de las flores verticiladas, no obstante, debido a que existen repeticiones de piezas florales, pueden existir uno o más planos de simetría, por lo que las mismas pueden tener simetría bilateral (es decir, un solo plano de simetría) o simetría radial (o sea, varios planos pueden dividir a la flor en otras tantas imágenes especulares). Así, se distinguen por su simetría, dos tipos de flores. Las flores denominadas actinomorfasradiadas opolisimétricas presentan simetría radial, como es el caso de Tulipa gesneriana (liliáceas) o Linum usitatissimum (lináceas). En cambio, las flores monosimétricasdorsiventrales o cigomorfastienen simetría bilateral y la evolución de su forma tiene relación con la necesidad de atraer y guiar a los polinizadores hasta ellas, como por ejemplo, las flores de las orquídeas y muchasleguminosas.15 Las flores espiraladas se consideran asimétricas según algunos autores,15 o actinomórficas según otros.16 17
La simetría se define en general a través del perianto, no obstante, el androceo también puede estar implicado debido a la reducción de algunas piezas (estaminodios) o al aborto de uno o más estambres, como ocurre en las eudicotiledóneas y en las monocotiledóneas. Las flores cigomorfas aparecieron relativamente tarde en el registro fósil (Cretácico superior) en comparación con el período aceptado de diversificación temprana de las angiospermas (Cretácico temprano).18 La polisimetría, entonces, se considera generalmente el estado ancestral de las angiospermas, y la monosimetría, el estado derivado que ha evolucionado de modo independiente en numerosas ocasiones. Como un carácter arquitectónico derivado, generalmente asociado con la diversificación de muchos linajes de plantas, constituye una innovación morfológica. De hecho, los cambios en la simetría floral están asociados con los cambios en el rango de polinizadores efectivos, lo que, por su lado, puede originar barreras a la hibridación entre las especies. Así, varios de los taxones con mayor riqueza de especies llevan flores monosimétricas, tanto en las eudicotiledóneas centrales (fabáceasasteráceas) como en las monocotiledóneas (zingiberáceasorquidáceas). Estos taxones tienen generalmente planes de organización "cerrados" con estructuras florales más o menos elaboradas. En contraste, la monosimetría está casi ausente en las angiospermas basales y es bastante infrecuente en las eudicotiledóneas basales (RanunculalesProteales) donde el plan de organización "abierto" es más común que en las eudicotiledóneas nucleares.19 18

[editar]Perianto y perigonio


Perianto de una flor de Ludwigia, se señala un sépalo y un pétalo.

Perigonio de una flor de Cymbidium.
Del mismo modo que las Bennettitales extintas y que sus parientes actuales las Gnetales, las flores de las angiospermas poseen una envoltura floral, un perianto, el cual está constituido por los verticilos estériles de la flor: el cáliz y la corola. Es evidente que la presencia del perianto se halla en relación funcional con la polinización por animales, ya que en estado de pimpollo el perianto protege los órganos reproductores aún inmaduros de los animales herbívoros visitantes y, durante la floración, las partes del perianto vivamente coloreadas contribuyen de modo esencial a la atracción de los animales polinizadores. En las flores de las angiospermas primitivas se observa un perianto homoclamídeo (todas las piezas iguales) formado por numerosas hojas perigoniales dispuestas helicoidalmente y libres entre sí, las exteriores parecidas a brácteas y las internas progresivamente más coloreadas y corolinas, similares a pétalos (por ejemplo en Magnolia).14
En muchos casos, en particular en las especies que son anemófilas (aquellas que no utilizan animales para la polinización, sino la acción del viento), como por ejemplo el "sauce llorón" (Salix babylonicasalicáceas) o el "fresno europeo" (Fraxinus excelsior , oleáceas) el perianto puede faltar, es decir, las flores solo presentan los verticilos fértiles (androceo y gineceo) y se denominan aperiantadasaclamídeas o, simplemente, flores desnudas. Las flores que presentan perianto, el caso más frecuente, se denominan periantadasclamídeas o vestidas. Las flores desnudas se han formado en el curso de procesos evolutivos de progresivo empequeñecimiento y simplificación de la flor. Tales flores secundariamente simplificadas caracterizan grupos de plantas anemófilas en las que un perianto diferenciado no solo es innecesario, al no producirse la visita de las flores por los animales, sino que incluso llega a ser perjudicial para la dispersión o la captación del polen por los estambres y carpelos, respectivamente.14
En las flores periantadas puede darse el caso de que solamente presenten cáliz, por lo que las mismas se denominan monoclamídeas o, más usualmente, apétalas y el ejemplo más conspicuo es el de la familia de las urticáceas. La ausencia de pétalos en estas flores no debe conducir a la suposición de que las mismas no son vistosas, ya que hay casos en los que los sépalos (denominados sépalos petaloideos) adquieren la consistencia, forma y colorido propio de los pétalos, como por ejemplo en las especies del género Clematis (ranunculáceas). Cuando las flores periantadas presentan tanto cáliz como corola se denominan diclamídeas. Los miembros de ambos verticilos pueden ser diferentes entre sí en forma y color y las flores se dicen heteroclamídeas, como por ejemplo la "rosa" (Rosa sp., rosáceas). Cuando, en cambio, las piezas del cáliz y de la corola son indistinguibles entre sí en forma y color, la flor se llama homoclamídea. En este tipo de flores, típicas de muchas familias de monocotiledóneascomo las iridáceas y las amarilidáceas, el perianto se denomina perigonio y las piezas que lo componen se llaman tépalos. Si los tépalos se parecen a un pétalo el perigonio se llama corolino (de corola), y si se parecen a sépalos se dice perigonio calicino (de cáliz).20
Asimismo, las piezas del perianto pueden ser independientes (cáliz dialisépalo y corola dialipétala) o estar más o menos soldados entre sí por sus bordes (cáliz gamosépalo y corola gamopétala, ver más adelante) o con otras piezas de la flor. Esta frecuente fusión de las piezas de un mismo ciclo se denomina concrescencia de las piezas del perianto y se produce en relación directa con la especialización en la zoogamia. Así, las flores con las piezas del perigonio libres son la condición más primitiva y todos los diferentes tipos de unión o concrescencia son derivados. La soldadura de las piezas del perianto determina muchas veces una mejor protección de los órganos reproductores respecto a las inclemencias atmosféricas o a los animales visitantes y una mejor coordinación espacial y fijación de los órganos florales frente a los animales polinizadores. A veces permite ofrecer a éstos mejores superficies para posarse, mejor acceso al néctar, mayor facilidad para entrar en contacto con los estambres y los estigmas. La concrescencia de las piezas del perianto también permite el desarrollo evolutivo de estructuras especializadas directamente involucradas en la polinización, por ejemplo, la formación de espolones nectaríferos en la base de los pétalos (AquilegiaCorydalisViolaOrchis), o paracorolas (Narcissus).14
Hay que tener en cuenta, asimismo, la importancia que presentan en Sistemática la posición y superposición lateral de las piezas del perianto, a la que se le da el nombre de prefloración. Esta disposición se debe observar en el pimpollo debido a que en la flor completamente abierta a menudo se han separado tanto las piezas florales unas de otras que la prefloración no puede determinarse. Hay seis tipos principales de prefloración. En la prefloración valvar las piezas florales pueden llegar a tocarse por los bordes, pero sin que ninguna de ellas se coloque por encima o por debajo de las inmediatas, en la contorta cada una monta sobre la que le sigue y es solapada por la que le precede; en la quincuncial, existen dos piezas totalmente externas, dos totalmente internas y la quinta pieza, es externa por uno de los bordes e interna por el otro. En la prefloración imbricada, hay una pieza externa por ambas orillas, otra, contigua a la anterior, totalmente interna, y las tres restantes son externas por un borde e internas por el otro. La prefloración vexilar es una variante de la precedente, con la pieza totalmente interna contigua a la externa, la cual ocupa una posición superior. Finalmente, en la prefloración carinal la pieza externa de la prefloración vexilar se hace interna y una de las piezas inferiores pasa a ser exterior. La prefloración es importante en la descripción e identificación de plantas ya que, a menudo, caracteriza a las diferentes familias. Así, las malváceas presentan prefloración valvar, las gencianáceas, contorta; y en las leguminosas, la prefloración vexilar y la carinal son características.21

[editar]Cáliz

El cáliz es el verticilo más externo de la flor. Tiene función protectora y está constituido por los sépalos, generalmente de color verde. Si los sépalos están libres entre sí, el cáliz se denominadialisépalo, mientras que si están unidos se llama gamosépalo como en el "clavel" (Dianthus caryophylluscariofiláceas) o el "seibo" (Erythrina crista-gallileguminosas).2

Detalle del espolón nectarífero de la flor de Tropaeolum majus.
Cuando el cáliz es gamosépalo se pueden distinguir tres partes bien definidas: el tubo, que es la porción en la cual los sépalos están unidos; lagarganta, que es el sitio en que los sépalos se separan unos de otros; y el limbo, que es la porción libre, formada por los extremos apicales de cada sépalo o lóbulos.
Los sépalos pueden tener consistencia y forma variadas. En la familia de las compuestas, por ejemplo, los sépalos están reducidos a pelos o cerdas que constituyen el denominado papus o vilano.
Según su duración con respecto a las otras piezas florales, el cáliz puede ser efímero o fugaz, cuando los sépalos caen al abrirse la flor, como en la "amapola" (Papaver rhoeaspapaveráceas); deciduo, cuando los sépalos se desprenden después de que ha ocurrido la fecundación; o persistentecuando permanece después de la fecundación y acompaña al fruto, como en el caso del "manzano" (Malus domesticarosáceas).22 23 14 Los sépalos pueden formar espolones que llevan néctar (se dicen espolones nectaríferos) para atraer a los polinizadores como ocurre en Viola y Tropaeolum,. En otras especies como por ejemplo en la "alegría" (Impatiens balsamina), algunas de las piezas del cáliz adquieren la forma y coloración de los pétalos y, por esa razón, se las adjetiva como "petaloides".23 24

[editar]Corola

La corola es el verticilo interno del perianto y el que rodea a los verticilos fértiles de la flor. Esta compuesto por antófilos denominados pétalos, los que son generalmente mayores que los sépalos y son coloreados.

Detalle de un pétalo de "clavel"(Dianthus). La parte inferior, más angosta y de color verde o blanquecina, es la uña; la parte más ancha y coloreada es el limbo del pétalo.

Flor de Mimulus. Flor bajo luz natural (izquierda) y bajo luz ultravioleta (derecha) mostrando las Guías de néctar que no son visibles para el ojo humano.
Cada pétalo consta de una uña que lo fija al receptáculo y una lámina o limbo que es la parte más ancha y vistosa. La uña puede ser muy corta, como en Rosa o muy larga como en el "clavel" (Dianthus). La lámina puede ser de forma, color y margen muy variado.2 Si los pétalos son libres entre sí la corola se denomina dialipétala; si, en cambio, se hallan unidos entre sí a través de sus márgenes, la corola se dice gamopétala y, como en el caso del cáliz, presenta tubo, garganta y limbo.24
La forma de la corola gamopétala puede ser muy variada: tubulosa (con forma de cilindro, como en las flores centrales de los capítulos de la familia de las compuestas), infundibuliforme (con forma de embudo, como en el caso de la "batata", Ipomoea batatasconvolvuláceas); campanulada (como un tubo inflado, parecido a una campana, como en el "muguet", Convallaria majalisruscáceas), hipocrateriforme (con forma de tubo largo y delgado, como en Jasminum), labiada (con el limbo formado por dos segmentos desiguales, como en el caso de Salvia splendens, una lamiácea), ligulada (con el limbo con forma de lengüeta, la cual se observa en las flores periféricas de los capítulos de muchas compuestas) y espolonada (cuando presenta uno o varios espolones nectaríferos, como en el caso de Aquilegia).25 23
La anatomía de los tépalos y pétalos es similar a la de los sépalos. Las paredes de las células epidérmicas frecuentemente son convexas o papilosas, especialmente en la cara adaxial. En muchos pétalos, como los de Brassica napus, las papilas son cónicas, con un engrosamiento cuticular marcado en el ápice, y estrías radiales hacia la base. Se ha sugerido que estos engrosamientos permiten una difusión pareja de la luz emergente, de manera que el brillo de los pétalos es uniforme en cualquier ángulo de iluminación. Algunas células epidérmicas de los pétalos son osmóforos, contienenaceites esenciales que imparten la fragancia característica a las flores. El mesófilo generalmente no presenta parénquima clorofiliano, sino parénquima fundamental.24 26
El color de los pétalos resulta de la presencia de pigmentos. En muchas flores las células presentan cromoplastos con pigmentos carotenoides (rojos, anaranjados, amarillos). Los pigmentos más importantes son los flavonoides, principalmente antocianinas, que se encuentran disueltos en elcitoplasma de la célula; los pigmentos básicos son pelargonidina (de color rojo), cianidina (violeta), y delfinidina (azul), flavonoles (de color amarillo a marfil). El color de los pigmentos antociánicos depende de la acidez (del pH) del jugo celular: en la solanácea Brunfelsia pauciflora ("azucena del monte") las flores son violáceas, pero al envejecer se vuelven blancas debido a un cambio en el pH. El color blanco de muchas flores, como por ejemplo el de Magnolia grandiflora, se debe al fenómeno de reflexión total de la luz. Los pétalos pueden presentar espacios de aire en posición subepidérmica o una capa de células con abundantes granos de almidón, y en ambos casos la luz se refleja. Los colores oscuros, se deben a una absorción total de la luz operada por pigmentos complementarios. En los cultivares de color negro de "tulipán" (Tulipa gesneriana), por ejemplo, hay antocianina azul en las células epidérmicas y caroteno amarillo en las subepidérmicas.27
Ha sido establecido que las piezas florales exhiben un mayor grado de absorbancia de luz ultravioleta (UV) que las hojas. F.K. Richtmeyer en 1923 y F.E. Lutz en 1924 fueron los primeros en advertir este fenómeno pero no hallaron una explicación al mismo.28 29 En 1933, Lotmar postuló que el fenómeno debía tener un significado biológico. Karl Daumer en 1958 observó que, como regla, las bases de los pétalos y los verticilos reproductivos absorben más luz ultravioleta que las regiones periféricas de la corola.30 En 1972 se hallaron las bases de estos patrones de reflectancia de la luz UV. Utilizando las flores liguladas de una especie de Rudbeckia (compuestas), se demostró claramente que la fuerte absorbancia en la base de las lígulas se debía a la existencia de flavonolglucósidos, los cuales tienen su máximo espectro de absorción en la región del UV (340 a 380 nm de longitud de onda).31 Esta demostración brindó la base química para la existencia de las guías de néctar de las plantas, las que son invisibles al ojo humano pero a las cuales responden los insectos polinizadores. En un estudio en el que se observaron los patrones de reflectividad de luz UV de 54 especies pertenecientes a 22 familias, se observó que la fuerte absorción de luz UV puede darse en la flor entera o bien en zonas limitadas, tales como las bases de las corolas, las anteras o puntos precisos de los pétalos, en la zona de la flor donde los insectos suelen aterrizar. Estas zonas se denominan "guías de néctar" y sirven como medio de reclamo para los insectos polinizadores. El color particular, visible sólo para los insectos, se denomina "púrpura de abejas".32 33 34

[editar]Androceo

El androceo es uno de los ciclos fértiles de las flores. Las piezas que integran el androceo se denominan estambres, los cuales tienen como función la generación de los gametofitos masculinos o granos de polen.

Diagrama de una antera en sección transversal. 1: Filamento; 2: Teca; 3:Conectivo (los vasos conductores en rojo); 4: Saco polínico (también llamado esporangio).
Los estambres son hojas muy modificadas formadas por un pie que se inserta en el receptáculo de la flor, llamado filamento, y una porción distal llamada antera. El filamento es la parte estéril del estambre, puede ser muy largo, corto o faltar, en ese caso las anteras se denominan sésiles. Generalmente es filiforme, pero puede ser grueso, incluso petaloide, y puede estar provisto de apéndices. La antera es la parte fértil del estambre y suele constar de dos partes distinguibles, contiguas, llamadas tecas, unidas por una zona llamada conectivo, que es también por donde la antera se une al filamento. Generalmente está formada por dos tecas, a veces puede estar constituida por una sola teca como en las malváceas y cannáceas o por tres en el caso de Megatritheca (esterculiáceas). Si se corta la antera perpendicularmente a su eje, se observa que cada antera contiene uno o dossacos polínicos que se extienden en toda su longitud.35 24
Después de la maduración de los granos de polen se produce la dehiscencia o apertura de la antera para dejar salir el polen. El tejido responsable se llama endotecio. Si la apertura se produce a todo lo largo del tabique que separa los sacos polínicos, la dehiscencia es longitudinal, que es el caso más frecuente. En otros casos el endotecio se localiza en zonas limitadas que luego se levantan como valvas o ventanillas: en la dehiscencia poricida (como en las solanáceas) no hay endotecio, se produce la destrucción del tejido en el ápice de la antera y se forman poros por donde saldrá el polen.35
El número de estambres en cada flor es un carácter muy variable. Algunas especies de la familia de las euforbiáceas tienen flores con un solo estambre (se dicen monandras), las oleáceas presentan dos estambres (flores diandras) y en las mirtáceas hay numerosos (son poliandras). El número de estambres puede ser igual o no al número de pétalos. Así, se dice que la flor es isostémona si presenta el mismo número de estambres que de pétalos (como puede observarse en las liliáceas y amarilidáceas); anisostémona si es diferente la cantidad de pétalos que de estambres (por ejemplo, en el género Brassica, hay cuatro pétalos y 6 estambres); diplostémona, cuando el número de estambres duplica a la cantidad de pétalos (el género Kalanchoe, por ejemplo, presenta cuatro pétalos y ocho estambres) y es polistémona cuando el número de estambres es más que el doble de pétalos (como en Poncirus, con cinco pétalos y numerosos estambres).36
La disposición helicoidal de numerosos estambres es la condición primitiva dentro de las angiospermas, a la que se denomina poliandria primaria. La reducción del número de estambres (oligomerización) y el paso de la condición verticilada a cíclica fue una tendencia evolutiva dentro de las angiospermas; inicialmente a través de la formación de varios ciclos de estambres, luego dos (diplostemonía) y, finalmente, uno solo (haplostemonía). No obstante, en algunos linajes de angiospermas no es infrecuente que el número de estambres aumente (poliandria secundaria), fenómeno que se observa en especies que ofrecen a sus polinizadores una cantidad de polen especialmente grande.24 Muchas veces las flores presentan un perianto reducido y los estambres son largos y vistosos. En estos casos la función de atracción de los polinizadores la cumple el androceo. Este tipo de flores suele estar dispuesto en inflorescencias que, por su forma, parecen cepillos o limpiatubos, como por ejemplo en algunas leguminosas (Inga uruguensisAcacia caven) y en las mirtáceas (Callistemon rigidus).35
Los estaminodios son los estambres estériles que de forma normal aparecen en ciertas flores. Su función es variada y puede tener que ver con la producción de néctar o con la función de atracción que suelen cumplir los pétalos.24

[editar]Gineceo

En las angiospermas el gineceo, también llamado pistilo, consta de uno o más carpelos u hojas carpelares que forman una cavidad, el ovario, dentro de la cual quedan protegidos los óvulos o primordios seminales, tanto de la desecación como del ataque de insectos fitófagos.
El gineceo consta de tres partes: el ovario, parte inferior abultada que forma una cavidad o lóculo en cuyo interior se encuentran los óvulos; el estilo que es una columna más o menos alargada que soporta al tercer componente del pistilo: el estigma. Éste está constituido por un tejido glandular especializado para la recepción de los granos de polen. En ocasiones el estilo puede faltar, y en esos casos el estigma se dice que es sésil.24
Si los carpelos están separados o libres entre sí, el gineceo se denomina dialicarpelar o apocárpico (como ocurre en las crasuláceas como Sedum yKalanchoe); si, por el contrario, los carpelos están soldados entre sí se llama gamocarpelar o sincárpico, que es lo más frecuente.24
En la flor dialicapelar cada carpelo constituye un pistilo, mientras en la sincárpica hay un solo pistilo. Por ejemplo, Kalanchoe, con cuatro carpelos libres, presenta cuatro pistilos. En el gineceo gamocarpelar o sincárpico la unión de los carpelos puede afectar sólo a la porción del ovario, por lo que quedan libres tanto los estilos como los estigmas (ejemplo, el género Turnera); puede involucrar los ovarios y los estilos, quedando libres los estigmas (como ocurre en las compuestas y en Hibiscus), por lo que se puede determinar el número de carpelos que conforman el pistilo por observación de la cantidad de estigmas. Finalmente, en muchas ocasiones la unión o soldadura de los carpelos es total. En estos casos el número de carpelos puede determinarse a través del número de los lóbulos estigmáticos (por ejemplo, en las bignoniáceas).

El estigma tiene forma variable, plumoso en el caso de las
 gramíneas, en cabezuela en Citrus, lobulado en Cucurbita, petaloide en Canna y hasta con forma de sombrilla invertida en el caso de Sarracenia. Tiene particularidades estructurales que permiten la germinación del polen y el desarrollo del tubo polínico que llegará hasta los óvulos. Se ha comprobado que el estigma esta cubierto por proteínas hidrofílicas en la pared externa; son probablemente las que actúan en el reconocimiento del polen adecuado y en las reacciones de autoincompatibilidad, en cuyo caso a veces de deposita calosa para detener la germinación del polen incompatible.37El estilo es de longitud variable, desde menos de 0,5 mm (estigma subsésil) hasta más de 30 cm en ciertas variedades de maíz, que es lo que se conoce como barba de choclo. Generalmente nace en el ápice del ovario, pero puede ser lateral o nacer aparentemente en la base (estilo ginobásico).37 Desde el punto de vista anatómico, el estilo puede ser sólido o hueco. En las plantas con estilo hueco el tejido de transmisión (por donde crecen los tubos polínicos para efectuar la fecundación) está constituido por una capa de células epidérmicas bastante diferenciadas que rodean un canal hueco (el denominado canal estilar). Los tubos polínicos crecen desde el estigma hacia el ovario a lo largo de la superficie de ese canal, normalmente a través de una fina capa de mucílago. En las plantas que poseen estilos sólidos, en cambio, las células epidérmicas se hallan íntimamente fusionadas y no dejan ningún espacio entre sí. Los tubos polínicos, en este caso, crecen entre las células del tejido de transmisión (como en el caso de Petunia,38 ) o a través de las paredes celulares (como en Gossypium,39 ). El tejido de transmisión en los estilos sólidos incluye una sustancia intercelular que contiene pectina, comparable al mucílago que se encuentra en el canal estilar de los estilos huecos.40 Desde el punto de vista de la distribución de ambos tipos de estilos entre las diferentes familias de angiospermas, los estilos sólidos se consideran típicos de laseudicotiledóneas y son raros en las monocotiledóneas.41 42
Los estigmas se dividen en dos grandes grupos: estigmas húmedos y secos.43 Los estigmas húmedos liberan un exudado durante el período receptivo y se presentan en familias como las orquidáceasescrofulariáceas y solanáceas. Los estigmas húmedos pueden presentar papilas (estigmas papilosos, como en AnnonaMandevillaBignonia y Punica) o no presentarlas (estigmas no papilosos, en CitrusImpatiensOpuntia y Tamarix ). Los estigmas secos no liberan secreciones líquidas, sino que producen proteínas o ceras. Pueden ser plumosos (gramíneas) o no plumosos y, en este caso, papilosos (CordylineYucca Pelargonium o no papilosos (AsclepiasCapparisCyperus).37
El ovario es la parte inferior del gineceo que contiene a los óvulos a fecundar. Está formado de una o más hojas modificadas que reciben el nombre decarpelos. Dentro del ovario hay una o más cavidades o "loculos" que contienen a los óvulos en espera de ser fecundados. Los óvulos es insertan dentro del ovario en una zona denominada placenta.
Una de las terminologías de descripción del ovario se refiere al punto de inserción sobre el receptáculo (donde las otras partes florales (periantio y androceo) se unen y se fijan a la superficie del ovario. Si el ovario se sitúa arriba del punto de inserción, será súpero; si es por debajo, ínfero.
El óvulo o rudimento seminal, nace sobre la placenta, situada en la cara interna del carpelo. Son de tamaño reducido, de pocos milímetros, y generalmente de forma ovoide, de allí su nombre. Cada óvulo consta de un cuerpo de tejido compacto, la nucela y un pie, el funículo, que lo une a la placenta. La región basal, donde se unen el funículo y la nucela, es la cálaza o chalaza. La nucela está rodeada por el o los tegumentos, los cuales son envolturas que parten de la cálaza y dejan un orificio llamado micrópilo. Cada óvulo está inervado por un haz vascular que atraviesa el funículo y llega hasta la cálaza. Este hacecillo puede ramificarse e inervar los tegumentos. El número de tegumentos es constante en cada familia o grupo de familias. Las gimnospermas, por ejemplo, tienen óvulos unitégmicos, a excepción de las podocarpáceas que presentan un segundo tegumento llamado epimacio. La mayoría de las dicotiledóneas y monocotiledóneas tienen óvulos bitégmicos, y el tegumento externo se llama primina y el interno secundina. Los óvulos unitégmicos se presentan en muchas dicotiledóneas gamopétalas y en las familias de monocotiledóneas orquídeas, gramíneas y amarilidáceas. El micrópilo puede estar delimitado por uno de los tegumentos (ejemplo, Lilium) o por ambos tegumentos (como el caso de Gossypium). La nucela tiene espesor variable. Si es pequeña, el óvulo se dice tenuinucelado; si tiene varias capas de células por fuera del saco embrionario, se denomina crasinucelado.44 45
La oósfera procede de una espora, denominada megáspora o macrospora, a través de un proceso denominado megagametogénesis que consiste básicamente en divisiones mitóticas. Su núcleoen general es haploide, o sea, posee la mitad de los cromosomas que la planta que le dio origen. La oósfera se fusiona con uno de los núcleos generativos del grano de polen durante la doble fecundación para originar al embrión. El otro núcleo generativo se fusionará con los núcleos polares de la célula media y originará al endosperma.24
La disposición que adoptan los óvulos dentro de la cavidad del ovario se denomina placentación. El número de placentas es, en general, igual al número de carpelos que forman el ovario. En ciertos casos, sin embargo, puede atrofiarse alguna de las placentas y un ovario pluricarpelar llega a contener un sólo óvulo, como por ejemplo en las gramíneas y en las compuestas. Existen distintos tipos de placentación. La placentación marginal, propia del gineceo unicarpelar (leguminosas) o dialicarpelar (magnoliáceasranunculáceas), donde cada carpelo tiene una sola placenta que corresponde a la zona de soldadura de la hoja carpelar. La placentación parietal, presente en las orquídeasvioláceaspasifloráceas y cucurbitáceas, ocurre en el gineceo formado por dos o más carpelos soldados por sus bordes formando una sola cavidad en el ovario, de manera que cada placenta corresponde a los bordes de dos hojas carpelares contiguas. La placentación axilar, propia de solanáceasrutáceasliliáceas e iridáceas, entre muchos otros ejemplos, ocurre en el gineceo formado por dos o más carpelos soldados en que cada uno lleva la placenta en el ángulo central, de manera que las suturas placentarias forman una columna adentro del ovario. Los óvulos de cada lóculo quedan así aislados de los vecinos por medio de los tabiques carpelares. Laplacentación central, propia de las primuláceas y cariofiláceas, ocurre en gineceos uniloculares formados por dos o más carpelos unidos y donde los óvulos están fijos sobre una columna central y sin tabiques con la pared del ovario. La placentación basal, finalmente, ocurre en especies con gineceo pluricarpelar y unilocular. El óvulo se dispone en el centro basal de la cavidad del ovario y es típica de las familias de las poligonáceasquenopodiáceas y compuestas.24 45

[editar]Sexualidad

La sexualidad floral está relacionada con la presencia o ausencia de los verticilos reproductivos: androceo y gineceo. Las flores que presentan ambos verticilos (o sea, que producirán tanto gametos femeninos como masculinos) se dicen perfectasbisexualesmonoclinas o, más frecuentemente, hermafroditas, como es el caso de las flores de la "papa" o "patata" (Solanum tuberosum, solanáceas). En muchas otras especies, por otro lado, las flores tienen un solo verticilo reproductivo y se dicen diclinasimperfectas o unisexuales, como ocurre en la "morera"(Morus nigramoráceas) y en la "calabaza" (Cucurbita maximacucurbitáceas). En el caso que tal verticilo sea el androceo, las flores se denominan masculinas o estaminadas; mientras que si el verticilo presente es el gineceo, las flores se denominan pistiladas o femeninas. Existen algunos casos en que la flor no presenta ninguno de los verticilos reproductivos y solo muestra sépalos y pétalos. La función de estas flores es el de especializarse, dentro de un grupo de flores que sí son perfectas, en la atracción hacia la inflorescencia de los insectos polinizadores. Tales flores, denominadas neutras o asexuales, se disponen usualmente en la periferia de la inflorescencia y se pueden observar, por ejemplo, en muchas especies de la familia de las compuestas, como la "margarita" (Bellis perennis) o el "girasol" (Helianthus annuus).15
Entre los botánicos prevalece actualmente la opinión de que las flores hermafroditas son menos evolucionadas que las flores unisexuales, al menos por las razones que se exponen a continuación. En primer lugar, en casi todos los grupos de angiospermas con flores unisexuales, se encuentran entre las flores femeninas y masculinas rudimentos de estambres o carpelos (por ejemplo, en Castanea y Urtica). En segundo lugar, los grupos de angiospermas más primitivos en cuanto a otros caracteres tienen principalmente flores hermafroditas (por ejemplo, lasmagnoliáceas) ya que sólo este tipo de flores hacen posible, en caso de polinización zoógama, la captación y cesión simultánea del polen. Finalmente, el paso de la condición hermafrodita a la unisexual ha sido determinada en numerosas ocasiones por vía selectiva a consecuencia de una transformación secundaria de flores entomógamas en anemógamas, como por ejemplo, en lasaceráceas (Acer) y en algunas oleáceas (Fraxinus).14

[editar]Fórmula y diagrama floral

Diagrama floral de Lilium. Véase la descripción en el texto.
Atracción de los polinizadoresLas costáceas ofrecen otro ejemplo. Dos de los estambres de las flores de esta familia son bastante inusuales, ya que durante la evolución, los mismos han perdido su función original (son estériles), se han fusionado y formaron una estructura muy llamativa denominada labelo. Este labelo eshomólogo a los estambres y análogo a los pétalos de los restantes linajes de angLas brácteas o hipsófilos son las hojas modificadas, generalmente de menor tamaño que las hojas normales, coloreadas o verdosas, que nacen sobre el raquis o acompañan a las flores. Algunas veces faltan, como en el caso de las crucíferas, otras veces reciben nombres especiales, tales comoglumas y glumelas en las gramíneas y ciperáceas, o espata en las aráceas y palmeras. En otros casos las brácteas forman órganos protectores de las flores (involucros), como la cúpula de los robles (Quercus) y el erizo del castaño. El prófilo o bracteola es la primera bráctea de una rama axilar, está dispuesta del lado opuesto a la hoja normal. En las monocotiledóneas es bicarenada y por el dorso, cóncavo, se adosa el eje que lleva la rama. En las espiguillas de las poáceas el prófilo recibe el nombre de pálea o glumela superior.Los órganos constitutivos de las inflorescencias plurifloras son las flores provistas o no del pedicelo, el eje o receptáculo común, el pedúnculo y lasbrácteas. El pedicelo es la parte del tallo que sostiene la flor; a veces es muy corto, y otras veces es nulo, en cuyo caso la flor se dice sentada o sésil. El eje o raquis es la parte alargada del tallo que lleva las ramas floríferas; si es corto y está ensanchado en forma de plato se llama receptáculo común. El pedúnculo, es la parte del tallo que soporta el raquis o el receptáculo común. El eje que sale de la base arrosetada de la planta o de un órgano subterráneo se llama escapo (como por ejemplo en AmaryllisAgapanthus y Taraxacum).4

[editar]

La zoofilia que caracteriza a muchas angiospermas presupone que los animales polinizadores visiten las flores de manera regular y se detengan en ellas el tiempo suficiente; que las anteras y el estigma sean rozados o tocados con cierta frecuencia y que el polen quede adherido a los visitantes de modo tan perfecto que pueda llegar con la debida seguridad a los estigmas de otras flores. El resultado de la zoofilia depende esencialmente de que los animales puedan reconocer las flores desde una cierta distancia y de que se vean compelidos a visitar durante un cierto tiempo las flores de la misma especie. Las flores zoófilas, entonces, deben poseer productos atractivos (cebos, como el polen y el néctar), medios de reclamo (tales como olores y colores) y, además, polen viscoso o adherente.14 En el curso de la evolución de las angiospermas se ha producido una diferenciación muy intensa de los medios de atracción y reclamo, así como de la forma de la flor; gracias a ello un número cada vez más grande de animales ha podido colaborar en la polinización. De la visita casual de las flores por animales variados se ha pasado de modo progresivo, en el transcurso de la evolución, al establecimiento de estrechas relaciones entre los «animales antófilos» y las «flores zoófilas», con evidentes ventajas para ambos grupos. Para las plantas implicó una precisión creciente en la atracción de solo determinados visitantes y una transferencia del polen a los estigmas de otras plantas cada vez más segura, lo que resultó en un ahorro progresivo en la producción de polen. De hecho, la relación entre el número de granos de polen y el número de óvulos producidos por una flor es del orden de un millón para las plantas anemófilas, mientras que en las orquídeas es de uno. Para los animales polinizadores especializados, la competencia con otros animales antófilos resultó disminuida y la polinización orientada o especializada en una sola especie pasó a ser, en última instancia, ventajosa para ellos.14 El desarrollo evolutivo de las angiospermas zoófilas y de los grupos de animales que se han ido adaptando a ellas sólo puede comprenderse como una coevolución condicionada por relaciones recíprocas. La adaptación entre sí de muchas plantas y sus polinizadores ha llegado a veces tan lejos que no pueden existir el uno sin el otro.14

[editar]Productos atractivos

Son los cebos que utilizan las flores como recompensa al agente polinizador. Básicamente se trata de alimentos, como polen y néctar; o sustancias químicas que los insectos utilizarán en sus rituales de apareamiento.49 El polen es una recompensa generalmente en aquellas flores polinizadas por coleópteros e himenópteros, atraídas por el fuerte aroma que despide.






¿ Qué son los frutos?

Después de la fecundación del óvulo femenino por el polen masculino, se produce la formación de los frutos. El fruto se origina especialmente por el engrosamiento de las paredes del ovario , aunque algunos frutos tienen otro origen ya que pueden proceden del engrosamiento del receptáculo floral o de otro lugar de la flor.
Algunos frutos tienen la consistencia blanda y se llaman frutos carnosos. Las frutas , como las manzanas o las peras, son ejemplos de frutos carnosos utilizados por el hombre para alimentarse. Otros frutos son muy duros al tacto y los llamamos frutos secos. Muchos frutos secos son muy ricos y muy nutritivos para el hombre que los utiliza en su dieta, como, por ejemplo, las nueces



Qué son las semillas?

Las semillas son los óvulos de la flor maduros. Las semillas se encuentran encerradas dentro de los frutos. Algunos frutos se abren espontáneamente para expulsar las semillas. Otros frutos permanecen cerrados y necesitan ser comidos por los animales o pudrirse para que sus semillas puedan salir al exterior. Si se dan las condiciones necesarias, las semillas germinan y producen nuevas plantas. 
 

1 comentario:

  1. Aburrido porqué es mucha mucha información 😭😭😭🤦🏼‍♀️🤦🏼‍♀️🤦🏼‍♀️🤦🏼‍♀️🤦🏼‍♀️🙈🎭

    ResponderEliminar